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Designing the Fourier space with
transformation optics
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We show that transformation optics can be applied to extend the functionalities of conventional optical de-
vices. In particular, geometrically compressing the input facet of any conventional optical elements can ex-
tend the input spatial frequency bandwidth. As an example, we design a Fourier lens that can transform the
image to its reciprocal space and operate for incident light of subwavelength profile. An explicit design em-
ploying metal–dielectric layers is given for realization. © 2009 Optical Society of America
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Transformation optics (TO) with metamaterials per-
mits the manipulation of the light flow at will by ar-
tificially reshaping the electromagnetic space,
through the spatially inhomogeneous permittivity
and permeability distribution [1,2]. It has led to the
most compelling demonstration of an invisibility
cloak at microwave frequencies [3]. Indeed, the impli-
cations of TO go beyond cloaking and provide a new
paradigm in designing optical components. Recently,
TO has been applied to reshaping free space to
achieve various additional optical components, such
as a field concentrator, rotator, and beam splitter
[4–6], and to transport a real space image, such as
the impedance-matched hyperlens, flat hyperlens,
and complementary media [7–14].

In this Letter, we develop a generic approach com-
bining TO with conventional optics to transform an
electromagnetic space to provide a broader band-
width in the spatial frequency domain. As an ex-
ample, we design a Fourier lens to transform the real
to the reciprocal space of the image, so that a sub-
wavelength profile can be resolved. This complemen-
tary control in both real and reciprocal space is espe-
cially emphasized in Fourier optics for applications
such as a spatial frequency filter for optical informa-
tion processing.

An optical Fourier transform can be obtained by a
Fraunhofer diffraction, converging lens, or graded-
index (GRIN) medium [15,16]. However, all of them
work only within the paraxial regime [15]. They have
a small input bandwidth, so that the Fourier trans-
form can be accurate only up to a fraction of the
wavenumber of the background medium. Utilizing
TO, we can increase the spatial frequency bandwidth
of the device. While TO is usually applied in trans-
forming homogeneous media, here the untrans-
formed space is a GRIN medium [17] with the follow-
ing refractive index profile:

n�x�� = n1�1 − �2x�2/8f2�, �1�

where f is the focal length and n�x�� (with maximum

n1) is truncated for values less than 1. Figure 1(a)
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shows the schematic with TM polarization (2D) as-
sumed for simplicity. At z�= f, the Fourier trans-
formed signal is

H�x�,f� �� H�x�,0�exp�− i�x��dx�, �2�

where H�x� ,0� and H�x� , f� are the input and the out-
put signal for the H field in the y direction. A position
x� at z�= f represents the spatial frequency � by [16]

� = n1k0�x�/2f, �3�

where k0 is the wavenumber of vacuum.
Next, we apply TO on the device through a coordi-

nate map [Fig. 1(b)]. The input facet is compressed by
a factor of N �N�1� while the output facet remains
the same size, D. As any input signal being com-
pressed in the real space is expanded by the same

Fig. 1. (Color online) (a) The rectangular GRIN medium is
geometrically compressed at the input and is transformed
into (b) a cylindrical shell. (c) Metamaterial building block
for the system shown in (b). (d) Expansion (shown by the
red arrow) of the paraxial regime shown in reciprocal space
from circular (blue circle, the original dielectric) to ellipti-

cal (red ellipse, the metal–dielectric-based metamaterial).
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amount in its spatial frequency spectrum, an N-times
enhancement for the input bandwidth is generic for
any optical device. In particular, we choose a map
from a rectangle to a cylindrical shell, given by

x� = R2�,

z� = �r2 − R1
2�/2R2, �4�

where �x� ,z�� and �r ,�� are the Cartesian and cylin-
drical coordinates before and after the map from
Figs. 1(a) and 1(b). R1 and R2 are the inner and outer
radii of the lens. The input interface is compressed by
a factor of N=R2 /R1, which is also the bandwidth en-
hancement. The input field at r=R1 is Fourier trans-
formed at r=R2. By coordinate transformation [Eq.
(4)], the GRIN medium [Eq. (1)] is transformed to a
new anisotropic medium with radial and azimuthal
indices of refraction:

nr�r,�� =
r

R2
n1�1 −

�2R2
2�2

8f2 � ,

n��r,�� =
R2

r
n1�1 −

�2R2
2�2

8f2 � , �5�

where f= �R2
2−R1

2� /2R2. The position R2� at the outer
interface represents the spatial frequency � of the in-
put signal at R1 as

� =
R2

R1

n1k0�

2f
R2�. �6�

While Eq. (5) describes the effective medium profile
for the cylindrical Fourier lens, we choose to provide
a feasible implementation of this medium by using
metamaterials, with a unit building block shown in
Fig. 1(c). It is constructed from metal layers of per-
mittivity −n1

2 and dielectric GRIN layers of refractive
index n2=n1�1−�� stacking alternately along the r di-
rection. � is the filling ratio of the metal, and � rep-
resents the graded dielectric profile as a function of
�r ,��. The thicknesses of the layers are subwave-
length (�	 /5 in design). The effective indices in the
direction perpendicular and parallel to the layers (up
to the first order of �) can be obtained by using effec-
tive medium theory [18],

nr = n1�1 −
1 − �

1 − 2�
���1 − 2��1/2,

n� = n1�1 −
1 − �

1 − 2�
���1 − 2��−1/2. �7�

Therefore, by varying � and �, we can control the
shape and the size of the equifrequency contour
gradually over the element. The original device has a
bandwidth limited by the highest available dielec-
trics. By introducing anisotropy through the metal
layers (without dielectrics of index higher than n1),
n� is increased with a decrease in nr. This elongated

equifrequency contour [Fig. 1(d)] expands the
paraxial regime �k�� �n�k0�, where the elliptical dis-
persion can be approximated by using a parabola kr
�nr�k0−k�

2 / �2k0n�
2��, thereby expanding the Fourier

transform operation of the lens to a larger bandwidth
and reaching subwavelength resolution when n� is
large enough.

The detailed design for the metamaterial Fourier
lens can be obtained by equating Eqs. (5) and (7). The
filling ratio of the metal layers (a function of r) is
given by

��r� = 1/2 − r2/2R2
2, �8�

and the dielectric GRIN layers between the metal
layers have the refractive index profile

n2�r,�� = n1�1 −
2R2

2

R2
2 + r2

�2r2�2

8f2 � . �9�

We set R1=14.4 
m, R2=21.6 
m, and n1=1.5 for the
metamaterial Fourier lens immersed in a glass back-
ground of refractive index 1.5. Figure 2 shows the
whole structure. The metal layers are Ag (with per-
mittivity −2.25+0.26i at the working wavelength of
360 nm [19]), and the GRIN layers can be obtained
by drilling subwavelength grooves or holes in glass
[17]. The filling ratio � decreases from 0.278 at the
inner to 0 at the outer radius to improve impedance
matching (dz� /dr=1 at r=R2). The period of each bi-
layer is 72 nm. Only the first 66 Ag layers (from the
inner radius) thicker than 8 nm are constructed,
while the remaining ones are dropped for simplifica-
tion, which does not affect the performance of the de-
vice. The index profile of the GRIN medium is imple-
mented according to Eq. (9) with truncation to 1 (the
air) for values less than 1.

To verify the optical Fourier transform action of the
metamaterials lens, we performed full-wave simula-
tion using the COMSOL Multiphysics solver [Fig.
3(a)]. A cylindrical wave is impinging on an absorp-

Fig. 2. (Color online) Detail of implementation using
metal–dielectric multilayers to construct the Fourier lens
with an effective medium [Eq. (5)]. The 66 yellow (light
gray) concentric layers are Ag (�=−2.25+0.26, while the
gray-scale map is the permittivity profile of the GRIN me-
dium (maximum index of 1.5 for white) interlacing with

them.
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tive screen (made of Cr) with aperture width a
=1.44 
m in front of the lens at R1. The rectangle ap-
erture function (width a) is optically Fourier trans-
formed at R2 with the H field amplitude plotted in
Fig. 3(b) in red (dark gray) while the ideal Fourier
transformed signal (amplitude of sinc function, nor-
malized against the fundamental peak for compari-
son) is shown in blue (lighter gray). A good match be-
tween them is obtained up to R2��2.2 
m. That is,
higher input spatial frequency components ranging
to ��1.3k0 [Eq. (6), with subwavelength features]
are optically Fourier transformed at the curved out-
put Fourier plane �R2�.

Finally, we evaluate the amplitude transfer func-
tion [15] of the metamaterial Fourier lens (from input
at R1 to output at R2) by considering a Dirac � func-
tion as the input signal. The � input function is ap-
proached by narrowing a Gaussian function at the in-
put of the lens until the spatial frequency spectrum
obtained at the lens output does not change with fur-
ther narrowing. When its amplitude is compared
with the corresponding result for the original GRIN
lens before applying TO (Fig. 4), the input bandwidth
(the largest � before the exponential drop of the
transfer amplitude) is apparently increased by
around 40% for the transformed lens. It is very close

Fig. 3. (Color online) (a) Optical Fourier transform (plot-
ted amplitude) of a rectangular input function from the de-
vice at a wavelength of 360 nm. (b) The amplitude of the
Fourier transform at the lens output is shown in red
(thicker gray), while the blue curve (thinner black) corre-
sponds to the ideal one.

Fig. 4. (Color online) Magnitude of the amplitude transfer
function at output interface R2 for the transformed lens
(red smooth curve) and the GRIN medium before transfor-
mation (blue wavy curve). A flat response is expected for an
ideal Fourier lens. Only data points that fall within the

lens diameter are shown.
to the expectation value R2 /R1=1.5, despite several
approximations (effective medium of the metal–
dielectric layers, material loss in Ag, and truncation
of the index profile) adopted in implementation. A
further increase in the input bandwidth can be
achieved by increasing the ratio between the outer
and the inner radius of the device.

In conclusion, we have demonstrated the use of TO
in designing a Fourier lens that can resolve subwave-
length features. A detailed implementation using
metal–dielectric layers is given and supported by
simulations. We have shown that the bandwidth in
spatial frequency for the device can be increased by
40% with respect to a conventional GRIN lens and
hence extends to the subwavelength regime. Our ap-
proach also provides a generic way to combine con-
ventional and transformation optics.
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