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Abstract: The possibility for controlling both the probe-field optical
gain and absorption, as well as photon conversion by a surface-plasmon-
polariton near field is explored for a quantum dot located above a metal
surface. In contrast to the linear response in the weak-coupling regime,
the calculated spectra show an induced optical gain and a triply-split
spontaneous emission peak resulting from the interference between the
surface-plasmon field and the probe or self-emitted light field in such a
strongly-coupled nonlinear system. Our result on the control of the mediated
photon-photon interaction, very similar to the ‘gate’ control in an optical
transistor, may be experimentally observable and applied to ultra-fast
intrachip/interchip optical interconnects, improvement in the performance
of fiber-optic communication networks, and developments of optical digital
computers and quantum communications.
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1. Introduction

It is well known that photons inherently do not interact with each other. In classical electro-
dynamics, Maxwell equations are linear and cannot describe any photon-photon interaction.
However, effective photon-photon coupling could exist in a mediated way, e.g., through their in-
teractions with matter. Very recently, an experiment [1], which involves firing pairs of photons
through an ultra-cold atomic gas, provided the evidence for an attractive interaction between
photons to form so-called ‘molecules’ of light. In general, if the interaction between photons
and matter is strong, the optical response of matter will become nonlinear and the resulting
bandedge optical nonlinearities [2] will enable an effective photon-photon interaction [3]. An
optical transistor [4] could be based on this idea, where ‘gate’ photons control the intensity of
a light beam ‘source’. Optical transistors could be applied to speed up and improve the perfor-
mance of fiber-optic communication networks. Here, all-optical digital signal processing and
routing is fulfilled by arranging optical transistors in photonic integrated circuits, and the signal
loss during the propagation could be compensated by inserting new types of optical amplifiers.
Moreover, optical transistors are expected to play an important role in the development of an
optical digital computer or quantum-encrypted communication.

Most previous research on optical properties of materials, including optical absorption, in-
elastic light scattering, and spontaneous emission, used a weak probe field as a perturbation
to the studied system [5]. In this weak-coupling regime, the optical response of electrons de-
pends only on the material characteristics [6], and, therefore, no photon-photon interaction is
expected. However, the strong-coupling regime could be reached with help from microcavi-
ties, and the experimental effort on searching for polariton condensation (resulting from strong
light-electron interaction) in semiconductors continues to produce results [7–9]. A general re-
view of exciton-polariton condensation may be found in [10]. Successful demonstration of
room-temperature polariton lasing without population inversion in semiconductor microcavi-
ties using both optical pumping [11, 12] and electrical injection [13, 14] have made it possible
to achieve ultra-low lasing thresholds and very small emitter sizes comparable to the emitted
wavelength. Semiconductor exciton-polariton nanolasers could advance intrachip and interchip
optical interconnects by integrating them into semiconductor-based photonic chips. They might
also have applications in medical devices and treatments, such as spatially selective illumina-
tion of individual neuron cells to locally control neuron firing activities in optogenetics and
neuroscience, and near-field high-resolution imaging beyond the optical diffraction limit as
well.

Theoretically, a big hurdle also exists for studying photon-photon interactions in the strong-
coupling regime mainly due to intractable numerical calculations for systems with very strong
nonlinearity. The existence of strong nonlinearity in such a system means that any perturbative
theories, e.g. using bare electron states or linear response theory [5], become inadequate for
describing both field and electron dynamics in this system. The presence of an induced polar-
ization, regarded as a source term in Maxwell equations [15,16], from photo-excited electrons
makes it impossible for us to solve the field equations by simply using finite-element anal-
ysis [17] or finite-difference-time-domain methods [18]. Although the semiconductor-Bloch
equations [19] and density-matrix equations [5, 20], derived from many-body theory, are able
to accurately capture the nonlinear optical response of electrons, the inclusion of pair scatte-
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ring effects on both energy relaxation and optical dephasing precludes an analytic approach for
seeking a solution of these equations. Consequently, there exist only very few theoretical studies
on resonantly-coupled excitons to microcavity field [21], which depend heavily on computer
simulations, and focus on simplified one-dimensional strongly-coupled microcavity systems.

Physically, not only high-quality microcavities [22] but also intense surface-plasmon near
fields [23, 24] should be employed for reaching the strong-coupling goal in semiconductors.
In this paper, we solve the self-consistent equations for strongly-coupled electromagnetic-field
dynamics and electron quantum kinetics in a quantum dot above the surface of a thick metal-
lic film. This is a situation that has not been fully explored so far from either a theoretical or
experimental point of view. This is done based on finding an analytical solution to Green’s func-
tion [25,26] for a quantum dot coupled to a semi-infinite metallic material system, which makes
it easy to calculate the effect of the induced polarization field as a source term in Maxwell equa-
tions. In our formalism, the strong light-electron interaction is reflected in the photon-dressed
electronic states with a Rabi gap and in the feedback from the induced optical polarization of
dressed electrons to the incident light. The formalism derived in this paper goes beyond the
weak-coupling limit and deals with a much more realistic structure in the strong-coupling limit
for the development of a surface-plasmon polariton laser with a very low threshold pumping.
Our results clearly demonstrate the ability to control probe-field optical gain and absorption,
and photon conversion by a surface-plasmon field with temperature-driven frequency detuning
in such a nonlinear system led by dressed electron states, very similar to the ‘gate’ control in an
optical transistor. These conclusions should be experimentally observable [27,28]. On the other
hand, our numerical results also provide an example that demonstrates the so-called quantum
plasmonics [29], where the properties of surface-plasmon polaritons and quantum-confined
electrons are hybridized through near-field coupling.

In Sec. 2, we introduce our physics model and derive self-consistent equations for determin-
ing the coupled scattering dynamics of a surface-plasmon field and the quantum kinetics of
electrons in quantum dots. Section 3 is devoted to a full discussion of our numerical results,
including scattering and optical absorption of the surface-plasmon-polariton field by quantum
dots, spontaneous emission, and the nonlinear optical response of the dressed electron states.
Some concluding remarks are given in Sec. 4.

2. Model and theory

Our model system, as shown in Fig. 1, consists of a semi-infinite metallic material with a semi-
conductor quantum dot above its surface. A surface-plasmon-polariton (SPP) field is locally
excited through a surface grating by normally-incident light. This propagating SPP field fur-
ther excites an interband electron-hole (e-h) plasma in the quantum dot. The induced optical-
polarization field of the photo-excited e-h plasma is strongly coupled to the SPP field to produce
split degenerate e-h plasma and SPP modes with an anticrossing gap. A brief description of our
self-consistent formalism was reported earlier [16]. In order to let readers follow easily the
details of our model and formalism, we present here the full derivation of the Maxwell-Bloch
numerical approach for an SPP field coupled to a photo-excited e-h plasma in the quantum dot.

2.1. General formalism

The Maxwell equation for a semi-infinite non-magnetic medium in position-frequency space
can be written as [25]

∇×∇×E(r; ω)− εb(x3; ω)
ω2

c2 E(r; ω) =
ω2

ε0c2 P loc(r; ω) , (1)
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Fig. 1. Schematic illustration for a semi-infinite metal and a quantum dot above its surface
at x3 = 0. Here, the surface-plasmon polariton (SPP) is locally excited by incident light with
the help of a surface grating. The propagating SPP field further excites e-h pairs (plasmas)
in the adjacent quantum dot. As a result, the optical-polarization field of the photo-excited
e-h plasma is strongly coupled to the propagating SPP field to form split plasma-SPP modes
with an anticrossing gap. Also, a probe-field is used for studying the photon dressing effect.

where E(r; ω) is the electric component of an electromagnetic field,

H(r; ω) =−
(

i
ωμ0

)
∇×E(r; ω) is the magnetic component of the electromagnetic field,

r = (x1,x2,x3) is a three-dimensional position vector, ω is the angular frequency of the incident
light, ε0, μ0 and c are the permittivity, permeability and speed of light in vacuum, P loc(r; ω) is
an off-surface local polarization field generated by optical transitions of electrons in a quantum
dot, and the position-dependent dielectric function is

εb(x3; ω) =

{
εd , for x3 > 0
εM(ω) , for x3 < 0

. (2)

Here, εd characterizes for the semi-infinite dielectric material in the region x3 > 0, while εM(ω)
is the dielectric function of the semi-infinite metallic material in the region x3 < 0. For the
Maxwell equation in Eq. (1), we introduce the Green’s function Gμν(r,r′; ω) that satisfies the
following equation

∑
μ

[
εb(x3; ω)

ω2

c2 δλ μ − ∂ 2

∂xλ ∂xμ
+δλ μ ∇2

r

]
Gμν(r,r′; ω) = δλν δ (r− r′) , (3)

where ∇2
r = ∑

μ

∂ 2

∂x2
μ

is the Laplace operator, δλ μ represents the Kronecker delta, and the indices

λ , μ = 1, 2, 3 indicate three spatial directions. Using the Green’s function defined in Eq. (3),
we can convert the Maxwell equation in Eq. (1) into a three-dimensional integral equation

Eμ(r; ω) = E(0)
μ (r; ω)− ω2

ε0c2 ∑
ν

∫
d3r′Gμν(r,r′; ω)P loc

ν (r′; ω) , (4)

where E(0)
μ (r; ω) is a solution of the corresponding homogeneous equation

∑
ν

[
εb(x3; ω)

ω2

c2 δμν − ∂ 2

∂xμ ∂xν
+δμν ∇2

r

]
E(0)

ν (r; ω) = 0 , (5)

and the source term P loc
ν (r′; ω) generally depends on the electric field in a nonlinear way and

can be determined by the Bloch equation [2, 15].
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2.2. Solving for Green’s function

For a semi-infinite medium, the Green’s function can be formally expressed by its Fourier
transform

Gμν(r,r′; ω) =
∫ d2k‖

(2π)2 e
ik‖·(r‖−r′‖) gμν(k‖,ω|x3,x

′
3) , (6)

where we have introduced the two-dimensional vectors r‖ = (x1,x2) and k‖ = (k1,k2). Substi-
tuting Eq. (6) into Eq. (3), we obtain

⎡
⎢⎢⎢⎢⎢⎢⎣

εb
ω2

c2 − k2
2 +

d2

dx2
3

k1k2 −ik1
d

dx3

k1k2 εb
ω2

c2 − k2
1 +

d2

dx2
3

−ik2
d

dx3

−ik1
d

dx3
−ik2

d
dx3

εb
ω2

c2 − k2
‖

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎣ g11 g12 g13

g21 g22 g23

g31 g32 g33

⎤
⎦

= δ (x3 − x′3)

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ . (7)

After a rotational transformation [25] is performed in k‖-space, i.e.,

fμν(k‖,ω|x3,x
′
3) = ∑

μ ′,ν ′
Sμμ ′(k‖)Sνν ′(k‖)gμ ′ν ′(k‖,ω|x3,x

′
3) , (8)

where the rotational matrix S (k‖) is

S (k‖) =
1
k‖

⎡
⎣ k1 k2 0

−k2 k1 0
0 0 k‖

⎤
⎦ , (9)

we acquire an equivalent version of Eq. (7)

⎡
⎢⎢⎢⎢⎢⎢⎣

εb
ω2

c2 +
d2

dx2
3

0 −ik‖
d

dx3

0 εb
ω2

c2 − k2
‖+

d2

dx2
3

0

−ik‖
d

dx3
0 εb

ω2

c2 − k2
‖

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎣ f11 f12 f13

f21 f22 f23

f31 f32 f33

⎤
⎦

= δ (x3 − x′3)

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ . (10)

To obtain the solution of Eq. (10), we need to employ both the finite-value boundary condition
at x′3 = ±∞ and the continuity boundary condition at the x3 = 0 interface. This leads to the
following five non-zero fμν(k‖,ω|x3,x′3) elements [25, 26]:

f22(k‖,ω|x3,x
′
3)
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=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
(

i
2p

)
2p

pd + p
eipdx3−ipx′3 , x3 > 0 , x′3 < 0

−
(

i
2p

)[
eip|x3−x′3| − pd − p

pd + p
e−ip(x3+x′3)

]
, x3 < 0 , x′3 < 0

−
(

i
2pd

)[
eipd|x3−x′3|+

pd − p
pd + p

eipd(x3+x′3)
]
, x3 > 0 , x′3 > 0

−
(

i
2pd

)
2pd

pd + p
e−ip(x3−x′3) , x3 < 0 , x′3 > 0

, (11)

f13(k‖,ω|x3,x
′
3)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ik‖c2

2εM(ω)ω2

[
2εM(ω)pd

εM(ω)pd + εd p

]
eipdx3−ipx′3 , x3 > 0 , x′3 < 0

ik‖c2

2εM(ω)ω2

[
eip|x3−x′3| sgn(x3 − x′3)+

εM(ω)pd − εd p
εM(ω)pd + εd p

e−ip(x3+x′3)
]
, x3 < 0 , x′3 < 0

ik‖c2

2εd ω2

[
eipd|x3−x′3| sgn(x3 − x′3)+

εM(ω)pd − εd p
εM(ω)pd + εd p

eipd(x3+x′3)
]
, x3 > 0 , x′3 > 0

− ik‖c2

2εd ω2

[
2εd p

εM(ω)pd + εd p

]
e−ipx3+ipdx′3 , x3 < 0 , x′3 > 0

(12)

f33(k‖,ω|x3,x
′
3)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
ik2
‖c

2

ω2

[
1

εM(ω)pd + εd p

]
eipdx3−ipx′3 , x3 > 0 , x′3 < 0

c2

εM(ω)ω2 δ (x3 − x′3)−
ik2
‖c

2

2pεM(ω)ω2

[
eip|x3−x′3| − εM(ω)pd − εd p

εM(ω)pd + εd p
e−ip(x3+x′3)

]
, x3 < 0 , x′3 < 0

c2

εd ω2 δ (x3 − x′3)−
ik2
‖c

2

2pdεd ω2

[
eipd|x3−x′3|+

εM(ω)pd − εd p
εM(ω)pd + εd p

eipd(x3+x′3)
]
, x3 > 0 , x′3 > 0

−
ik2
‖c

2

ω2

[
1

εM(ω)pd + εd p

]
e−ipx3+ipdx′3 , x3 < 0 , x′3 > 0

(13)

f11(k‖,ω|x3,x
′
3)
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=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ipd pc2

ω2

[
1

εM(ω)pd + εd p

]
eipdx3−ipx′3 , x3 > 0 , x′3 < 0

− ipc2

2εM(ω)ω2

[
eip|x3−x′3|+

εM(ω)pd − εd p
εM(ω)pd + εd p

e−ip(x3+x′3)
]
, x3 < 0 , x′3 < 0

− ipdc2

2εd ω2

[
eipd|x3−x′3| − εM(ω)pd − εd p

εM(ω)pd + εd p
eipd(x3+x′3)

]
, x3 > 0 , x′3 > 0

− ipdc2

2εd ω2

[
2εd p

εM(ω)pd + εd p

]
e−ipx3+ipdx′3 , x3 < 0 , x′3 > 0

(14)

f31(k‖,ω|x3,x
′
3)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ik‖c2

ω2

[
p

εM(ω)pd + εd p

]
eipdx3−ipx′3 , x3 > 0 , x′3 < 0

ik‖c2

2εM(ω)ω2

[
eip|x3−x′3| sgn(x3 − x′3)−

εM(ω)pd − εd p
εM(ω)pd + εd p

e−ip(x3+x′3)
]
, x3 < 0 , x′3 < 0

ik‖c2

2εd ω2

[
eipd|x3−x′3| sgn(x3 − x′3)−

εM(ω)pd − εd p
εM(ω)pd + εd p

eipd(x3+x′3)
]
, x3 > 0 , x′3 > 0

− ik‖c2

ω2

[
pd

εM(ω)pd + εd p

]
e−ipx3+ipdx′3 , x3 < 0 , x′3 > 0

(15)

where sgn(x) is the sign function,

pd(k‖,ω) =

√
εd

ω2

c2 − k2
‖ , (16)

p(k‖,ω) =

√
εM(ω)

ω2

c2 − k2
‖ , (17)

Im[pd(k‖,ω)]≥ 0 and Im[p(k‖,ω)]≥ 0. In addition, from these non-zero fμν(k‖,ω|x3,x′3) func-
tions, we obtain

gμν(k‖,ω|x3,x
′
3) = ∑

μ ′,ν ′
fμ ′ν ′(k‖,ω|x3,x

′
3)Sμ ′μ(k‖)Sν ′ν(k‖) , (18)

which can be substituted into Eq. (6) to calculate the Green’s function Gμν(r,r′; ω) in position
space.

2.3. Local polarization field

In order to find the explicit field dependence in P loc(r; ω), we now turn to the study of
electron dynamics in a quantum dot. Here, the optical-polarization field P loc(r; ω) plays
a unique role on bridging the classical Maxwell equations for electromagnetic fields to the
quantum-mechanical Schrödinger equation for electrons. The electron dynamics in photo-
excited quantum dots can be described quantitatively by the so-called semiconductor Bloch
equations [30–32]. These generalize the well-known optical Bloch equations in two aspects
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including the incorporation of electron scattering with impurities, phonons and other electrons
as well as many-body effects on dephasing in the photo-induced optical coherence.

The physical system considered in this paper is illustrated in Fig. 2, where we assume two
levels for electrons and holes, respectively, in a quantum dot. These two energy levels of both
electrons and holes are efficiently coupled by phonon scattering at high temperatures. Addi-
tionally, the lowest electron and hole energy levels are optically coupled to each other by an
incident SPP field to form the dressed states of excitons. The SPP-controlled optical properties
of quantum-dot excitons can either probed by a plane-wave field or seen from the spontaneous
emission of excitons.

E2

e

E1

e
phonon coupling

1

Eevanescent spontaneousprobe

E sp E p

h

EG
evanescent
SPP field

spontaneous
emission

probe
field

p emsp

E1

h

Eh phonon coupling

E2

Fig. 2. Schematic illustration for a system incorporating the generation of quantum-dot
excitons by a SPP field with frequency ωsp and probed by a plane-wave field Ep with
frequency ωp. Here, EG is the energy bandgap of the host semiconductor, εe

� and εh
j stand

for the energy levels of electrons and holes, respectively, with �, j = 1, 2, · · ·. In addition,
ωem represents the frequency of spontaneous emission from photo-excited excitons, and
the ground states of electrons and holes are coupled to their first excited states by lattice
phonons at finite temperatures.

For photo-excited spin-degenerated electrons in the conduction band, the semiconductor
Bloch equations with �= 1, 2, · · · are given by

dne
�

dt
=

2
h̄ ∑

j
Im
[(

Y j
�

)∗(
M eh

�, j −Y j
� V eh

�, j; j,�

)]
+

∂ne
�

∂ t

∣∣∣∣
rel
−δ�,1 Rsp ne

1 nh
1 , (19)

where Rsp is the spontaneous emission rate and ne
� represents the electron level population. In

Eq. (19), the term marked ‘rel’ is the non-radiative energy relaxation for ne
�, and the Y j

� , M eh
�, j ,

and V eh
�, j; j,� terms are given later in the text.

Similarly, for spin-degenerate holes in the valence band, the semiconductor Bloch equations
with j = 1, 2, · · · are found to be

dnh
j

dt
=

2
h̄ ∑

�

Im
[(

Y j
�

)∗(
M eh

�, j −Y j
� V eh

�, j; j,�

)]
+

∂nh
j

∂ t

∣∣∣∣∣
rel

−δ j,1 Rsp ne
1 nh

1 , (20)

where nh
j stands for the hole energy level population. Again, the non-radiative energy relaxation

for nh
j is incorporated in Eq. (20). Moreover, we know from Eqs. (19) and (20) that
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Ne(t) = 2 ∑
�

ne
�(t) = 2 ∑

j
nh

j(t) = Nh(t) , (21)

where Ne(t) and Nh(t) are the total number of photo-excited electrons and holes, respectively,
in the quantum dot at time t.

Finally, for spin-averaged e-h plasmas, the induced interband optical coherence, which is
introduced in Eqs. (19) and (20), with j = 1, 2, · · · and �= 1, 2, · · · satisfies the following equa-
tions,

ih̄
d
dt

Y j
� =

[
εe
�(ω)+ εh

j(ω)− h̄(ω + iγ0)
]
Y j
� +

(
1−ne

�−nh
j

)(
M eh

�, j −Y j
� V eh

�, j; j,�

)

+Y j
�

[
∑
j1

nh
j1

(
V hh

j, j1; j1, j −V hh
j, j1; j, j1

)
−∑

�1

ne
�1

V eh
�1, j; j,�1

]

+Y j
�

[
∑
�1

ne
�1

(
V ee
�,�1;�1,�

−V ee
�,�1;�,�1

)−∑
j1

nh
j1 V eh

�, j1; j1,�

]
, (22)

where h̄γ0 = h̄γeh + h̄γext is the total energy-level broadening due to both the finite carrier life-
time and the loss of an external evanescent field, ω is the frequency of the external field, and
εe
�(ω) and εh

j(ω) are the kinetic energies of dressed single electrons and holes, respectively (see

Appendix A with α = 1). In Eq. (22), the diagonal dephasing (γ0) of Y j
� , the renormalization

of interband Rabi coupling (Y j
� V eh

�, j; j,�), the renormalization of electron and hole energies (third
and fourth terms on the right-hand side), as well as the exciton binding energy, are all taken
into consideration. Since the e-h plasmas are independent of spin index in this case, they can be
excited by both left-circularly and right-circularly polarized light. The off-diagonal dephasing
of Y j

� has been neglected due to low carrier density.

The steady-state solution to Eq. (22), i.e. under the condition of dY j
� /dt = 0, is found to be

Y j
� (t|ω) =

[
1−ne

�(t)−nh
j(t)

h̄(ω + iγ0)− h̄Ωeh
�, j(ω|t)

]
M eh

�, j(t) , (23)

where the photon and Coulomb renormalized interband energy-level separation h̄Ωeh
�, j(ω|t) is

given by

h̄Ωeh
�, j(ω|t) = εe

�(ω|t)+ εh
j(ω|t)−V eh

�, j; j,�+∑
�1

ne
�1
(t)
(
V ee
�,�1;�1,�

−V ee
�,�1;�,�1

)

+∑
j1

nh
j1(t)

(
V hh

j, j1; j1, j −V hh
j, j1; j, j1

)
− ∑

�1 �=�

ne
�1
(t)V eh

�1, j; j,�1
− ∑

j1 �= j

nh
j1(t)V

eh
�, j1; j1,�

. (24)

The steady-state solution in Eq. (23) can be substituted into Eqs. (19) and (20) above.
The Coulomb interaction matrix elements introduced in Eqs.(19), (20) and (22) are defined

as

V ee
�1,�2;�3,�4

=
∫

d3r
∫

d3r′
[
ψe
�1
(r)
]∗ [ψe

�2
(r′)
]∗ e2

4πε0εb|r− r′| ψe
�3
(r′)ψe

�4
(r)

=
e2

8π2ε0εb

∫
d2q‖F e

�1,�4
(q‖)F e

�2,�3
(−q‖)

(
1

q‖+qs

)
=
(
V ee
�1,�2;�3,�4

)∗
, (25)

#217702 - $15.00 USD Received 23 Jul 2014; accepted 16 Sep 2014; published 30 Oct 2014
(C) 2014 OSA 3 November 2014 | Vol. 22,  No. 22 | DOI:10.1364/OE.22.027576 | OPTICS EXPRESS  27585



V hh
j1, j2; j3, j4 =

∫
d3r

∫
d3r′

[
ψh

j1(r)
]∗ [

ψh
j2(r

′)
]∗ e2

4πε0εb|r− r′| ψh
j3(r

′)ψh
j4(r)

=
e2

8π2ε0εb

∫
d2q‖F h

j1, j4(q‖)F h
j2, j3(−q‖)

(
1

q+qs

)
=
(
V hh

j1, j2; j3, j4

)∗
, (26)

V eh
�, j; j′,�′ =

∫
d3r

∫
d3r′ [ψe

� (r)]
∗
[
ψh

j (r
′)
]∗ e2

4πε0εb|r− r′| ψh
j′(r

′)ψe
�′(r)

=
e2

8π2ε0εb

∫
d2q‖F e

�,�′(q‖)F h
j, j′(−q‖)

(
1

q+qs

)
=
(
V eh
�, j; j′,�′

)∗
, (27)

where the static screening length 1/qs at temperatures (kBT � EF ) is determined from

qs(t) =
e2

4ε0εbS kBT
[Ne(t)+Nh(t)] . (28)

Here, S is the cross-sectional area of a quantum dot, T is the lattice temperature, ψe
� (r) and

ψh
j (r) are the envelope wave-functions of electrons and holes in a quantum dot (see Appendix

A), and εb is the average dielectric constant of the host semiconductor. The two dimension-
less form factors (see Appendix A) introduced in Eqs. (25)-(27) for electrons and holes due to
quantum confinement by a quantum dot are defined by

F e
�,�′(q‖) = e−q‖L0

∫
d2r‖

[
ψe
� (r‖)

]∗
eiq‖·r‖ ψe

�′(r‖) =
[
F e

�′,�(−q‖)
]∗

, (29)

F h
j, j′(q‖) = e−q‖L0

∫
d2r‖

[
ψh

j (r‖)
]∗

eiq‖·r‖ ψh
j′(r‖) =

[
F h

j′, j(−q‖)
]∗

, (30)

where L0 is the thickness of a disk-like quantum dot. In addition, the matrix elements em-
ployed in Eqs. (19), (20) and (22) for the Rabi coupling between photo-excited carriers and an
evanescent external field E(r; t) = θ(t)E(r; ω)e−iωt are given by

M eh
�, j(t) =−δ�,1 δ j,1 θ(t)

[
Eeh
�, j(ω) ·dc,v

]
, (31)

where θ(x) is a unit step function, the static interband dipole moment dc,v (see Appendix A) is

dc,v =
∫

d3r [uc(r)]
∗ ruv(r) = d∗

c,v , (32)

uc(r) and uv(r) are the Bloch functions associated with conduction and valence bands at the
Γ-point in the first Brillouin zone of the host semiconductor, and the effective electric field
coupled to the quantum dot is

Eeh
�, j(ω) =

∫
d3r [ψe

� (r)]
∗E(r; ω)

[
ψh

j (r)
]∗

. (33)

The Boltzmann-type scattering term [33] for non-radiative electron energy relaxation in
Eq. (19) is

∂ne
�

∂ t

∣∣∣∣
rel

= W
(in)
� (1−ne

�)−W
(out)
� ne

� , (34)

where the microscopic scattering-in and scattering-out rates are calculated as
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W
(in)
� =

2π
h̄ ∑

�′
′
∣∣∣V ep

�,�′
∣∣∣2 ne

�′

{
Nph(Ω0)

[
h̄Γph/π

(εe
�− εe

�′ − h̄Ω0)2 + h̄2Γ2
ph

]

+
[
Nph(Ω0)+1

][ h̄Γph/π
(εe

�− εe
�′ + h̄Ω0)2 + h̄2Γ2

ph

]}

+
2π
h̄ ∑

�′
′ ∑

j, j′
′
∣∣∣V eh

�, j; j′,�′
∣∣∣2 (1−nh

j)nh
j′ n

e
�′

[
h̄γeh/π

(εe
�+ εh

j − εe
�′ − εh

j′)
2 + h̄2γ2

eh

]
, (35)

W
(out)
� =

2π
h̄ ∑

�′
′
∣∣∣V ep

�,�′
∣∣∣2 (1−ne

�′)

{
Nph(Ω0)

[
h̄Γph/π

(εe
�′ − εe

�− h̄Ω0)2 + h̄2Γ2
ph

]

+
[
Nph(Ω0)+1

][ h̄Γph/π
(εe

�′ − εe
�+ h̄Ω0)2 + h̄2Γ2

ph

]}

+
2π
h̄ ∑

�′
′ ∑

j, j′
′
∣∣∣V eh

�′, j; j′,�

∣∣∣2 (1−ne
�′)(1−nh

j)nh
j′

[
h̄γeh/π

(εe
�′ + εh

j − εe
�− εh

j′)
2 + h̄2γ2

eh

]
. (36)

Here,the primed summations in Eqs. (35) and (36) exclude the terms satisfying either j = j′
or �′ = �, Nph(Ω0) = [exp(h̄Ω0/kBT )− 1]−1 is the Bose function for the thermal-equilibrium
phonons, and Ω0 and Γph are the frequency and lifetime of longitudinal-optical phonons in
the host semiconductor. Similarly, the Boltzmann-type scattering term for hole non-radiative
energy relaxation in Eq. (20) is

∂nh
j

∂ t

∣∣∣∣∣
rel

= W
(in)
j (1−nh

j)−W
(out)
j nh

j , (37)

where the scattering-in and scattering-out rates are

W
(in)
j =

2π
h̄ ∑

j′
′
∣∣∣V hp

j, j′
∣∣∣2 nh

j′

{
Nph(Ω0)

[
h̄Γph/π

(εh
j − εh

j′ − h̄Ω0)2 + h̄2Γ2
ph

]

+
[
Nph(Ω0)+1

][ h̄Γph/π
(εh

j − εh
j′ + h̄Ω0)2 + h̄2Γ2

ph

]}

+
2π
h̄ ∑

�,�′
′ ∑

j′
′
∣∣∣V eh

�, j; j′,�′
∣∣∣2 (1−ne

�)nh
j′ n

e
�′

[
h̄γeh/π

(εe
�+ εh

j − εe
�′ − εh

j′)
2 + h̄2γ2

eh

]
, (38)

W
(out)
j =

2π
h̄ ∑

j′
′
∣∣∣V hp

j, j′
∣∣∣2 (1−nh

j′)

{
Nph(Ω0)

[
h̄Γph/π

(εh
j′ − εh

j − h̄Ω0)2 + h̄2Γ2
ph

]

+
[
Nph(Ω0)+1

][ h̄Γph/π
(εh

j′ − εh
j + h̄Ω0)2 + h̄2Γ2

ph

]}

#217702 - $15.00 USD Received 23 Jul 2014; accepted 16 Sep 2014; published 30 Oct 2014
(C) 2014 OSA 3 November 2014 | Vol. 22,  No. 22 | DOI:10.1364/OE.22.027576 | OPTICS EXPRESS  27587



+
2π
h̄ ∑

�,�′
′ ∑

j′
′
∣∣∣V eh

�, j′; j,�′
∣∣∣2 (1−ne

�)(1−nh
j′)ne

�′

[
h̄γeh/π

(εe
�+ εh

j′ − εe
�′ − εh

j)
2 + h̄2γ2

eh

]
, (39)

and again the primed summations in Eqs. (38) and (39) exclude the terms satisfying either
j′ = j or �= �′. The coupling between the longitudinal-optical phonons and electrons or holes
in Eqs. (35), (36), (38) and (39) are

∣∣∣V ep
�,�′
∣∣∣2 = e2h̄Ω0

8π2ε0

(
1

ε∞
− 1

εs

)∫
d2q‖

∣∣∣F e
�,�′(q‖)

∣∣∣2
(

1
q‖+qs

)
, (40)

∣∣∣V hp
�,�′
∣∣∣2 = e2h̄Ω0

8π2ε0

(
1

ε∞
− 1

εs

)∫
d2q‖

∣∣∣F h
j, j′(q‖)

∣∣∣2
(

1
q‖+qs

)
, (41)

where ε∞ and εs are the high-frequency and static dielectric constants of the host polar semi-
conductor.

By generalizing the Kubo-Martin-Schwinger relation [20], the time-dependent spontaneous
emission rate, Rsp(t), introduced in Eqs. (19) and (20), can be expressed as

Rsp(t) =

∣∣d′
c,v(t)

∣∣2
ε0
√

εb

∣∣∣∣
∫

d3rψe
1(r)ψh

1 (r)

∣∣∣∣
2 ∞∫

0

dω ′ θ
[
h̄ω ′ −Ec(t)− εe

1(ω|t)− εh
1(ω|t)

]

×h̄ω ′ ρ0(ω ′)

{
h̄γeh

[h̄ω ′ −Ec(t)− εe
1(ω|t)− εh

1(ω|t)]2 + h̄2γ2
eh

}
, (42)

where

∣∣d′
c,v(t)

∣∣2 = e2h̄2

2m0 EG(T )

[
1+

Ec(t)
EG(T )

](
m0

m∗
e
−1

)
, (43)

EG(T ) = EG(0)−5.41×10−4 T 2/(T +204) (in units of eV) is the energy bandgap of the host
semiconductor, ρ0(ω) = ω2/c3π2h̄ is the density-of-states of spontaneously-emitted photons
in vacuum, m0 is the free electron mass, m∗

e is the effective mass of electrons, and the Coulomb
renormalization of the energy bandgap Ec(t) is found to be

Ec(t) = ∑
�1

ne
�1
(t)
(
V ee

1,�1;�1,1 −V ee
1,�1;1,�1

)
+∑

j1

nh
j1(t)

(
V hh

1, j1; j1,1 −V hh
1, j1;1, j1

)

−∑
�1

ne
�1
(t)V eh

�1,1;1,�1
−∑

j1

nh
j1(t)V

eh
1, j1; j1,1 −

[
1−ne

1(t)−nh
1(t)

]
V eh

1,1;1,1 . (44)

In Eq. (44), the first two terms are associated with the Hartree-Fock energies of electrons and
holes, while the remaining terms are related to the exciton binding energy.

Finally, the photo-induced interband optical polarization P loc(r; ω), which is related to the
induced interband optical coherence, by dressed electrons in the quantum dot is given by [2]

P loc(r; ω) = 2 |ξ (r)|2 dc,v

{∫
d3r′ ψe

1(r
′)ψh

1 (r
′)
}

× 1
h̄

lim
t→∞

[
1−ne

1(t)−nh
1(t)

ω + iγ0 −Ωeh
1,1(ω|t)

]
M eh

1,1(t) , (45)

where dc,v = dc,v êd represents the interband dipole moment [see Eq. (32)], êd is the unit vector
of the dipole moment, and |ξ (r)|2 comes from the confinement of a quantum dot.
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2.4. Self-consistent field equation

Since the wavelength of the incident light is much larger than the size of a quantum dot, we
can treat the quantum dot, which is excited resonantly by the incident light, as a point dipole at
r = r0 = (0,0,z0), i.e. we can assume P loc(r′; ω) = P loc(ω)δ (r′ − r0) in Eq. (4) to neglect
its geometry effect. This greatly simplifies the calculation and gives rise to

Eμ(r; ω) = E(0)
μ (r; ω)− ω2

ε0c2 ∑
ν

Gμν(r,r0; ω)P loc
ν (ω) , (46)

where

P loc(ω) = 2dc,v

{∫
d3r′ ψe

1(r
′)ψh

1 (r
′)
}

×1
h̄

lim
t→∞

{
1−ne

1(t)−nh
1(t)

ω + iγ0 −Ωeh
1,1(ω|t)

}
M eh

1,1(t) , (47)

M eh
1,1(t) =−θ(t) [E(r0; ω) ·dc,v]

{∫
d3rψe

1(r)ψh
1 (r)

}∗
. (48)

Substituting Eqs. (47) and (48) into Eq. (46), we get the following nonlinear equations for the
electromagnetic field

Eμ(r; ω) = E(0)
μ (r; ω)+

2ω2

ε0c2 [E(r0; ω) ·dc,v] dc,v

∣∣∣∣
∫

d3r′ ψe
1(r

′)ψh
1 (r

′)
∣∣∣∣
2

×1
h̄

lim
t→∞

{
1−ne

1(t)−nh
1(t)

ω + iγ0 −Ωeh
1,1(ω|t)

}
∑
ν

Gμν(r,r0; ω) êν
d , (49)

where the quantum-dot level populations ne
�(t) and nh

j(t) depend nonlinearly on E(r0; ω) in the
strong-coupling regime.

If the electromagnetic field is not very strong, we can neglect the pumping effect. In this
linear-response regime, we can write down the electron and hole populations in a thermal-
equilibrium state [without solving Eqs. (19) and (20)]

ne
�(t)≈ f0(εe

�)≡
1

exp[(εe
�−μe)/kBT ]+1

, (50)

nh
j(t)≈ f0(εh

j)≡
1

exp[(εh
j −μh)/kBT ]+1

, (51)

where f0(x) is the Fermi function, and μe and μh are the chemical potentials of electrons and
holes, respectively, determined by Eq. (21). As a result of Eqs. (50) and (51), we get from
Eq. (49) the linearized self-consistent field equation at r = r0

∑
ν

Aμν(r0; ω)Eν(r0; ω) = E(0)
μ (r0; ω) (52)

with

Aμν(r0; ω) = δμν − 2ω2

ε0c2h̄

[
1− f0(εe

1)− f0(εh
1)

ω + iγ0 −Ωeh
1,1(ω)

] ∣∣∣∣
∫

d3r′ ψe
1(r

′)ψh
1 (r

′)
∣∣∣∣
2
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×d2
c,v

[
êν

d ∑
ν1

Gμν1(r0,r0; ω) êν1
d

]
, (53)

where, according to Eq. (6), we have

Gμν(r0,r0; ω) =
∫ d2k‖

(2π)2 gμν(k‖,ω|z0,z0) . (54)

The solution E(r0; ω) of the linear-matrix equation in Eq. (52) can be substituted into Eq. (49)
to yield the spatial distribution of the electromagnetic field E(r; ω) at all positions other than
r = r0, i.e.,

Eμ(r; ω) = E(0)
μ (r; ω)+

2ω2

ε0c2h̄

[
∑
ν ,ν ′

êν
d A −1

νν ′ (r0; ω)E(0)
ν ′ (r0; ω)

]

×
∣∣∣∣
∫

d3r′ ψe
1(r

′)ψh
1 (r

′)
∣∣∣∣
2

d2
c,v

[
1− f0(εe

1)− f0(εh
1)

ω + iγ0 −Ωeh
1,1(ω)

]
∑
ν1

Gμν1(r,r0; ω) êν1
d . (55)

In order to find the coupled e-h plasma and plasmon dispersion relation ω = Ωex−pl(k‖), we

Fourier transform both E(r; ω) and E(0)(r; ω) in Eq. (46) with respect to r‖. This leads to

Eμ(k‖,ω|x3) = E(0)
μ (k‖,ω|x3)− ω2

ε0c2 ∑
ν

gμν(k‖,ω|x3,z0)P
loc
ν (ω) . (56)

After setting x3 = z0 in Eq. (56), we get

∑
ν

{
δμν − 2ω2

ε0c2h̄

[
1− f0(εe

1)− f0(εh
1)

ω + iγ0 −Ωeh
1,1(ω)

] ∣∣∣∣
∫

d3r′ ψe
1(r

′)ψh
1 (r

′)
∣∣∣∣
2

d2
c,v

×
[

êν
d ∑

ν1

gμν1(k‖,ω|z0,z0) êν1
d

]}
Eν(k‖,ω|z0) = E(0)

μ (k‖,ω|z0) . (57)

Here, the vanishing of the determinant of the coefficient matrix in Eq. (57) determines the cou-
pled e-h plasma and plasmon dispersion relation ω = Ωex−pl(k‖). We emphasize that the as-
sumption of thermal-equilibrium states for electrons and holes is just for obtaining analytical
expressions. Therefore, some qualitative conclusions can be drawn for guidance from these an-
alytical solutions. Our numerical results, however, are based on the non-thermal-equilibrium
steady states calculated after solving self-consistently the coupled Maxwell-Bloch equations.

By assuming an incident SPP field within the x1x2-plane, we can write

E(0)(r; ωsp) = Esp eik0(ωsp)·D0
c

ωsp

[
ik̂0β3(k0,ωsp)− x̂3k0(ωsp)

]
eik0(ωsp)·x‖ e−β3(k0,ωsp)x3 , (58)

where x‖ = {x1, x2}, k̂0 and x̂3 are the unit vectors in the k0 = k0(ωsp){cosθ0, sinθ0} and x3

directions, Esp is the field amplitude, ωsp is the field frequency, θ0 is the angle of the incident
SPP field with respect to the x1 direction, D0 = {−xg,−yg} is the position vector of the surface
grating, and the two wave numbers are

k0(ωsp) =
ωsp

c

√
εd εM(ωsp)

εd + εM(ωsp)
, (59)
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β3(k0,ωsp) =

√
k2

0(ωsp)−
ω2

sp

c2 , (60)

with Re[k0(ωsp)] ≥ 0 and Re[β3(k0,ωsp)] ≥ 0. Here, the in-plane wave number k0 is produced
by the surface-grating diffraction of the p-polarized normally-incident light, which in turn de-
termines the resonant frequency ω of the SPP mode. Equation (59) stands for the full dispersion
relation of the SPP field, including both radiative and non-radiative parts. From Eq. (58), it is
easy to find its Fourier transformed expression

E(0)(k‖,ωsp|z0) = δ (k‖ −k0)Esp eik0(ωsp)·D0
(2π)2c

ωsp

×[ik̂0β3(k0,ωsp)− x̂3k0(ωsp)
]

e−β3(k0,ωsp)z0 . (61)

2.5. Quantum-dot absorption

On the basis of the electromagnetic field E(r0; ω) at the quantum dot, we are able to compute
the time-resolved nonlinear interband absorption coefficient of dressed electrons in a quantum
dot for the SPP field [34]. In this case, we find

β0(ω; t) =
ω
√

εb

nspp(ω; t)c

[
1

exp(h̄ω/kBT )−1
+1

]
Im
[
αspp(ω; t)

]
, (62)

where αspp(ω; t) is the complex Lorentz function given by

Im[αspp(ω; t)] = θ(t)
(

2

ε0εbV |E(0)(r0; ω)|2
)
|E(r0; ω) ·dc,v|2

∣∣∣∣
∫

d3rψe
1(r)ψh

1 (r)

∣∣∣∣
2

×
[
1−ne

1(t)−nh
1(t)

]{ [A2(ω; t)−B2(t)]2 +4h̄2γ2
0 A2(ω; t)

[A2(ω; t)+B2(t)]2 +4h̄2γ2
0 A2(ω; t)

} [
h̄γ0

Δ2(ω; t)+ h̄2γ2
0

]
, (63)

Re[αspp(ω; t)] =−θ(t)
(

2

ε0εbV |E(0)(r0; ω)|2
)
|E(r0; ω) ·dc,v|2

∣∣∣∣
∫

d3rψe
1(r)ψh

1 (r)

∣∣∣∣
2

×
[
1−ne

1(t)−nh
1(t)

]{ A4(ω; t)−B4(t)]2

[A2(ω; t)+B2(t)]2

} [
Δ(ω; t)

Δ2(ω; t)+ h̄2γ2
0

]
, (64)

and the scaled refractive index function nspp(ω; t) can be calculated by

nspp(ω; t) =
1√
2

(
1+Re

[
αspp(ω; t)

]

+

√{
1+Re

[
αspp(ω; t)

]}2
+
{

Im
[
αspp(ω; t)

]}2
)1/2

. (65)

In Eqs. (63) and (64), the dressed-state effects on both the level population and dipole moment
have been included. In addition, we have introduced the following notations in Eqs. (63) and
(64)

Δ(ω; t) =
√
[EG(T )+ εe

1 + εh
1 − h̄ω]2 +4|M eh

1,1(t)|2 , (66)

A2(ω; t) =
[
h̄ω −EG(T )− εe

1 − εh
1 +Δ(ω; t)

]2
, B2(t) = 4|M eh

1,1(t)|2 . (67)
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2.6. Probing quantum-dot dressed states

We are also able to compute the time-resolved linear interband absorption coefficient of elec-
trons, dressed by the SPP field, for a weak probe field (not the strong SPP field) on the basis
of the electromagnetic field E(r0; ω) at the quantum dot calculated above [34]. Assuming a
spatially-uniform probe field E p(t) = θ(t − τ)E p e−iωpt where τ is the delay time, the probe-
field absorption coefficient βabs(ωp; t) of the lowest dressed state is given by Eq. (62) with the
replacements of ω , nspp, and αspp by ωp, npf, and αpf, respectively, where

αpf(ωp; t) =−θ(t − τ)
(

2
ε0εbV |E p|2h̄

)∣∣E p ·dc,v
∣∣2
∣∣∣∣
∫

d3rψe
1(r)ψh

1 (r)

∣∣∣∣
2 [

1−ne
1(t)−nh

1(t)
]

×
{

A2(ω; t)−B2(t)
[A2(ω; t)+B2(t)]2

}{
A2(ω; t)

ωp + iγeh −Ωeh
1,1(ω−|t)

− B2(t)

ωp + iγeh −Ωeh
1,1(ω+|t)

}
, (68)

npf(ωp; t) =

1√
2

(
1+Re

[
αpf(ωp; t)

]
+

√{
1+Re

[
αpf(ωp; t)

]}2
+
{

Im
[
αpf(ωp; t)

]}2
)1/2

.(69)

Here, using Eq. (24) we have

h̄Ωeh
1,1(ω±|t) = h̄ω±(t)−

[
1−ne

1(t)−nh
1(t)

]
V eh

1,1;1,1 +∑
�1

ne
�1
(t)
(
V ee

1,�1;�1,1 −V ee
1,�1;1,�1

)

+∑
j1

nh
j1(t)

(
V hh

1, j1; j1,1 −V hh
1, j1;1, j1

)
−∑

�1

ne
�1
(t)V eh

�1,1;1,�1
−∑

j1

nh
j1(t)V

eh
1, j1; j1,1 , (70)

and

h̄ω±(t) = h̄ω ±Δ(ω; t) . (71)

Moreover, the time-resolved photoluminescence spectrum Pem(ω ′; t) of dressed electrons
in the quantum dot is proportional to

Pem(ω ′; t)∝
|d′

c,v|2
ε0
√

εbL0
ne

1(t)nh
1(t) h̄γeh

{
1

[A2(ω; t)+B2(t)]2

} ∣∣∣∣
∫

d3rψe
1(r)ψh

1 (r)

∣∣∣∣
2

h̄ω ′ ρ0(ω ′)

×
{

A2(ω; t)B2(t)

[h̄ω ′ −Ec(t)− h̄ω−(t)]2 + h̄2γ2
eh

+
A2(ω; t)B2(t)

[h̄ω ′ −Ec(t)− h̄ω+(t)]2 + h̄2γ2
eh

+
A4(ω; t)+B4(t)

[h̄ω ′ −Ec(t)− h̄ω]2 + h̄2γ2
eh

}
. (72)

3. Numerical results and discussions

3.1. Results for the dynamics of an SPP field

In the first part of our numerical calculations, we have taken: L0 = 100 Å, Ly = 100 Å, m∗
e =

0.067m0, m∗
h = 0.62m0, θ0 = 45o, xg = yg = 610 Å, εb = 12, εs = 11, ε∞ = 13, h̄Ω0 = 36 meV

and h̄γeh = h̄Γph = h̄γ0. The silver plasma frequency is 13.8× 1015 Hz and the silver plasma
dephasing is 0.1075×1015 Hz. The energy gap EG of the quantum-dot host material is 1.927 eV
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at T = 300 K. Other parameters, including T , Esp, Lx, h̄γ0, z0 and εd, will be directly indicated
in the figures.

Figure 3 presents the quantum dot absorption coefficient β0(ωsp) for an SPP field, the scat-
tered field |Etot −Esp| of the SPP field, and the energy-level occupations for electrons n�,e and
holes n j,h with �, j = 1, 2 as functions of frequency detuning Δh̄ωsp ≡ h̄ωsp−(EG+ε1,e+ε1,h).
A dip is observed at resonance Δh̄ωsp = 0 in the upper-left panel, which appears to become
deeper with decreasing amplitude Esp of the SPP field in the strong-coupling regime due to a
decrease in the saturated absorption. However, this dip completely disappears when Esp drops
to 25 kV/cm in the weak-coupling regime due to the suppression of the photon-dressing effect,
which is accompanied by an order of magnitude increase in the absorption-peak strength. The
dip in the upper-left panel corresponds to a peak in the scattered field, as can be seen from the
upper-right panel of the figure. The scattered field increases with frequency detuning away from
resonance, corresponding to the decreasing absorption. As a result, a minimum appears on each
side of the resonance in the scattered field in the strong-coupling regime. The Maxwell-Bloch
equations couple the field dynamics outside of a quantum dot with the electron dynamics inside
the dot. At Esp = 125 kV/cm in the lower-right panel, we find peaks in the energy-level occupa-
tions at resonance, which are broadened by the finite carrier lifetime as well as the optical power
of the SPP field. Moreover, jumps in the energy-level occupations can be seen at resonance due
to Rabi splitting of the energy levels in the dressed electron states. The effect of resonant phonon
absorption also plays a significant role in the finite value of n2,e with energy-level separations
ε2,e − ε1,e ≈ h̄Ω0. However, as Esp decreases to 25 kV/cm in the lower-left panel, peaks in the
energy-level occupations are greatly sharpened and negatively shifted due to the suppression
of the broadening from the optical power and the excitonic effect, respectively. Additionally,
jumps in the energy-level occupations become invisible because the Rabi-split energy gap in
this case is much smaller than the energy-level broadening from the finite lifetime of electrons
(i.e. severely damped Rabi oscillations between the first electron and hole levels).

We know that a decrease in temperature T gives rise to an increase in the crystal bandgap EG.
On the other hand, the localization of an SPP field (i.e. an exponential decay of the field strength
on either side of a metallic surface) is greatly enhanced when the SPP frequency ωsp approaches
that of a surface plasmon. As a result, the field at the quantum dot is expected to decrease
as T is reduced. This gives rise to a higher absorption coefficient for a lower temperature,
as shown in the upper-left panel of Fig. 4. Interestingly, although the suppressed absorption
coefficient can be seen from β0(ωsp) for high SPP-field amplitudes, as shown by Eq. (63),
from the upper-right panel of this figure we find the resonant peak at h̄ωsp = EG + ε1,e + ε1,h

initially increases with T but then decreases with T at room temperature. This subtle difference
demonstrates the effect of reduced phonon absorption at T = 77 K on the resonant scattered
field by the factor 1− ne(t)− nh(t) in Eq. (49). Moreover, the strong effect of the suppressed
optical-phonon absorption between two electron energy levels at 77 K is clearly demonstrated
in the lower panels of Fig. 4, where the level occupation n2,e becomes negligible at T = 77 K in
comparison with that at T = 300 K.

The electron thermal dynamics due to phonon absorption has been demonstrated in Fig. 4
for various temperatures. In Fig. 5, we present the electron dynamics resulting from the optical
dephasing, due to the finite lifetime of electrons, at different energy-level broadenings h̄γ0. As
h̄γ0 is increased from 3 meV to 7 meV, the dip in β0(ωsp) at resonance is suppressed, leading to
a single peak with a reduced strength and an increased width, as shown in the upper-left panel
of the figure. This increase in the resonant absorption is further accompanied by an enhanced
resonant peak for the scattered field in the upper-right panel of this figure. As expected, the
energy-level occupations at h̄γ0 = 7 meV become much broader than those at h̄γ0 = 3 meV, as
displayed in the lower two panels of the figure.
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Fig. 3. Optical absorption coefficients β0(ωsp) (upper-left panel) and scattering field |Etot−
Esp| at the quantum dot (upper-right panel), as well as the energy-level occupations for
electrons n�,e and holes n j,h (lower panels) with �, j = 1, 2, as functions of the frequency
detuning Δh̄ωsp ≡ h̄ωsp− (EG+ε1,e+ε1,h). Here, the results for various amplitudes Esp of
an SPP field with frequency ωsp are presented in the upper panels, along with a comparison
of the energy-level occupations for Esp = 25 and 125 kV/cm in the lower panels. The label
×0.1 in the upper-left panel indicates that the result is multiplied by a factor of 0.1.

We further notice that the effective bandgap EG + ε1,e + ε1,h also depends on the size Lx

of a quantum dot due to the quantization effect, and the effective bandgap will increase with
decreasing Lx. The size effect from such an Lx dependence is displayed in Fig. 6. From the
upper-left panel of Fig. 6, we find that the peak of β0(ωsp) is enhanced as Lx is reduced. This
phenomenon is connected to the increased localization of the SPP field at Lx = 170 Å as the
SPP frequency approaches the saturation part of its dispersion. Moreover, the dip in β0(ωsp)
is lifted somewhat uniformly at the same time due to a decreased ne

1(t) from the enhanced
Coulomb and phonon scattering at Lx = 170 Å. Here, β0(ωsp) is proportional to the population
factor 1− ne

1(t)− nh
1(t), as can be seen from Eq. (63). Besides the slightly-reduced resonant

peak strength of the scattered field for Lx = 170 Å (also resulting from the enhanced carrier
scattering), |Etot −Esp| keeps the same peak position, as shown in the upper-right panel of the
figure. In this case, |Etot −Esp| at the dot approaches a nonzero value at resonance, as can be
seen from Eq. (55), and tends to zero rapidly away from resonance. Additionally, n2,h is reduced
for Lx = 170 Å, as can be found from a comparison between the two lower panels of the figure.
This is attributed to the reduced phonon absorption between two hole energy levels.

In Figs. 4 and 6, we vary the localization of an SPP field by changing the effective bandgap.
Since the frequency of the surface plasmon (saturated dispersion part) is proportional to the
factor of 1/

√
1+ εd, a smaller value of εd implies a higher surface-plasmon frequency or a

reduced localization of the SPP field. We verify the change in the SPP localization by observing
the upper two panels of Fig. 7, where the absorption peak, as well as the resonant scattered-field

#217702 - $15.00 USD Received 23 Jul 2014; accepted 16 Sep 2014; published 30 Oct 2014
(C) 2014 OSA 3 November 2014 | Vol. 22,  No. 22 | DOI:10.1364/OE.22.027576 | OPTICS EXPRESS  27594



140 )

100

120

140

 300K
 175K
 77K

E
sp

=175kV/cm
L

x
=210A

0
=3meV

z / =0 1(c
m

-1
)

4

5  300K
 175K
 77K

E
sp

=175kV/cm
L

x
=210A

0
=3meV

z / =0 14  k
V

 /
 c

m

40

60

80
z

0
/

sp
=0.1

d
=12

0
(

sp
)

(
2

3

z
0
/

sp
0.1

d
=12

E sp
|  

  
(1

0
-4

-30 -20 -10 0 10 20 30

20

- (E + + ) (meV)
-30 -20 -10 0 10 20 30

1

|E
to

t -
 E

(E + + ) (meV)sp
- (E

G
+

1,e
+

1,h
) (meV)

sp
- (E

G
+

1,e
+

1,h
) (meV)

0.6

0 4

0.5

0 6

T=300K

n

n
1,e

n
j,h

0 2

0.4

0.6 T=77K

n
1,h

n
1,e

n
j,h

0 2

0.3

0.4

n
2,h

n
1,h

n
j,e

 ,

0.006

0.008

0.2

n
2,e

n
2,h

n
j,e

 ,
n

-30 -20 -10 0 10 20 30
0.1

0.2 n
2,e

- (E + + ) (meV)
-30 -20 -10 0 10 20 30

0.002

0.004

- (E + + ) (meV)sp
(E

G 1,e 1,h
) (meV)

sp
- (E

G
+

1,e
+

1,h
) (meV)

Fig. 4. β0(ωsp) (upper-left panel) and |Etot −Esp| (upper-right panel), as well as n�,e and
holes n j,h (lower panels), as functions of Δh̄ωsp. Here, the results for three different temper-
atures T = 300, 175 and 77 K are displayed in the upper panels, along with a comparison
of n�,e and holes n j,h for T = 300 and 77 K in the lower panels.

peak, become much stronger as εd is increased from 8 to 12 due to the reduction of saturated
absorption for a lower field strength at the quantum dot. Furthermore, from the two lower panels
of this figure we also observe, via the jumps in the population curves, an enhanced Rabi-split
energy gap in the electron dressed states as εd is reduced from 12 to 10 due to the enhanced
field strength at the quantum dot.

In the presence of the localization of an SPP field, we can move a quantum dot closer to
a metallic surface to gain a higher field at the quantum dot. The upper-left panel of Fig. 8
has elucidated this fact, in which a larger z0 corresponds to a weaker field, and then, a higher
absorption peak due to the reduction of saturated absorption. This fact is also reflected in the
upper-right panel of the figure, where a higher resonant scattered-field peak occurs for a larger
value of z0. At z0 = 510 Å, a Rabi-split energy gap at resonance is clearly visible from the lower-
left-panel of the figure for electron dressed states. Additionally, at z0 = 710 Å, by entering into
a weak-coupling regime for a weaker field at the dot, we find sharpened resonant peaks in the
energy-level occupations of electrons and holes, similar to the observation from the lower-left
panel of Fig. 3.

3.2. Results for the dressed states of electrons

In the second part of the numerical calculations, besides the parameters given in the first sub-
section, we have fixed Lx = 210 Å, h̄γ0 = 3 meV, z0 = 610 Å and εd = 12. Other parameters,
including T , Esp and Δh̄ωsp, will be directly indicated in the figures. Additionally, Δh̄ωsp is
given with respect to the energy gap at T = 300 K.

From the left panel of Fig. 9 we find a strong absorption (positive) peak and a weak gain (neg-
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Fig. 5. β0(ωsp) (upper-left panel) and |Etot −Esp| (upper-right panel), as well as n�,e and
holes n j,h (lower panels), as functions of Δh̄ωsp. Here, the results with different energy-
level broadening h̄γ0 = 3, 5 and 7 meV are shown in the upper panels, along with a com-
parison of n�,e and holes n j,h for h̄γ0 = 3 and 7 meV in the lower panels.

ative) peak for the probe-field absorption coefficient βabs(ωp) due to a quantum coherence effect
from the electron states being dressed by an SPP field. In the strong-coupling regime, the dis-
persion of the quantum-dot e-h plasmas (dot-like branch) and SPPs (photon-like branch) form
an anticrossing gap, where a higher-energy dot-like branch at a negative frequency detuning
switches to a photon-like branch for a positive detuning. The positive peak is associated with the
absorption of a probe-field photon by a quantum-dot e-h plasma, while the negative peak relates
to the process with absorption of two photons from an SPP field and emission of one probe-
field photon. The absorption peak is significantly reduced by saturation at Esp = 1000 kV/cm,
and the gain peak is suppressed by a smaller Rabi-coupling frequency at Esp = 250 kV/cm (see
the inset of the left panel). In addition, we observe from the right panel of Fig. 9 that two Rabi-
splitting-induced side emission peaks for the spontaneous emission Pem(ω) become weaker
and closer to the strong central peak as Esp is reduced (see the inset of the right panel). More-
over, the strength of the central peak due to the coherent conversion of an absorbed SPP-field
photon to a spontaneously-emitted photon (non-linear optical behavior) is slightly reduced at
Esp = 1000 kV/cm as a result of saturated absorption of the SPP field.

Figure 10 demonstrates the effect of frequency detuning Δh̄ωsp of an SPP field with respect to
the bandgap of a quantum dot. The switching of the detuning from 10 meV to −10 meV reveals
the corresponding spectral-position interchange between the absorption (dot-like branch) and
the gain (photon-like branch) peaks for βabs(ωp) in the left panel of the figure. The Rabi oscil-
lations between the first electron and hole energy levels are weakened with increasing |Δh̄ωsp|.
At resonance with a zero detuning, both the absorption and gain peaks are suppressed by very
strong Rabi oscillations. This detuning also shifts the emission peaks correspondingly because
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Fig. 6. β0(ωsp) (upper-left panel) and |Etot −Esp| (upper-right panel), as well as n�,e and
holes n j,h (lower panels), as functions of Δh̄ωsp. Here, the results for three different sizes
Lx = 210, 190 and 170 Å of a quantum dot are shown in the upper panels, along with a
comparison of n�,e and holes n j,h for Lx = 210 and 170 Å in the lower panels.

of the coherent conversion of an SPP-field photon to a spontaneously-emitted one, as can been
seen from the right panel of this figure. Moreover, the central peak is weakened and the two
side peaks are enlarged at resonance as a result of energy transfer to the side peaks by strong
coupling and enhanced Rabi oscillations, respectively.

Since the temperature affects the crystal bandgap energy EG, by changing the temperature
we are able to scan the detuning Δh̄ωsp of the SPP field with a fixed SPP frequency h̄ωsp

from negative to positive or vice versa. This leads to a spectral-position interchange between
the absorption and gain peaks, similar to Fig. 10. The results in Fig. 11 prove such an expected
feature by increasing T from 250 to 300 K in steps of 5 K. Technically, changing the temperature
in the experiment is much easier than changing the tuning of a laser frequency over a large
range. Here, the shift of the central peak in the right panel of the figure directly reflects the
variation of the SPP-field detuning with T . Furthermore, the interchange between the dot-like
and photon-like modes with T in the left panel can be regarded as direct evidence for the
existence of an anticrossing energy gap resulting from a strongly-coupled e-h plasma and SPP
field or coupled e-h plasmas and surface plasmons.

3.3. Time-resolved optical spectra

In our previously presented numerical results, we only showed steady-state dynamics of photo-
excited e-h plasmas in a quantum dot by using a continuous SPP field, where the effects of
both phonon scattering and e-h pair radiative recombination are combined with each other.
Using a laser pulse to launch a pulsed SPP field, we are able to study the dynamics of phonon
scattering (narrow pulse) as well as the dynamics of e-h pair radiative recombination (wide
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Fig. 7. β0(ωsp) (upper-left panel) and |Etot −Esp| (upper-right panel), as well as n�,e and
holes n j,h (lower panels), as functions of Δh̄ωsp. Here, the results for three dielectric con-
stants of a cladding layer, with εd = 8, 10 and 12, are displayed in the upper panels, along
with a comparison of n�,e and holes n j,h for εd = 12 and 10 in the lower panels.

pulse), separately. Dynamically, phonon scattering becomes effective only after a characteristic
time (around 1 ps), its effect can be seen from a significant increase of n2,e in our system. Figure
12 displays the results for β0(ωsp) (upper-left), |Etot −Esp| (upper-right), n1,e (lower-left) and
n2,e (lower-right) for various detection times τ0 in the presence of a narrow laser pulse (with
pulse width Tp = 500 fs and peak value Esp = 500kV/cm) which is turned on at t = 0. We
see from Fig. 12 that β0(ωsp) starts with a dip for the dressed state at resonance, then shifts to a
single peak (at half-pulse width) due to a suppression of the photon-dressing effect. It eventually
becomes a single peak plus a shifted dip after the pulse has passed due to formation of resonant
peaks in n1,e and n1,h. Correspondingly, |Etot −Esp| starts by showing a non-resonant behavior
with a relatively large magnitude, then shifts to a quasi-resonant behavior, and finally looks like
suppressed resonant behavior with a peak at and dips on both sides of Δh̄ωsp = 0. The resonant
build up of n1,e after τ0 ≥ 500 fs can also be verified from this figure, which is accompanied by
the start of significant phonon absorption after τ0 ≥ 1 ps.

Technically, detecting dynamics of photo-excited e-h plasmas by using another time-delayed
weak probe field is much more feasible, as shown in Fig. 13. From the left panel of this figure,
we find that βabs(ωp) starts with a pair of positive absorption and negative gain peaks due to
a very strong photon dressing effect for the delay times τd = 60 and 120 fs. This is changed
to a strong absorption peak plus a very weak gain peak at τd = 240 fs. At the end, βabs(ωp)
becomes independent of τd , indicating that a linear optical-response regime has been reached.
On the other hand, from the right panel of this figure, we see that the central peak of Pem(ω) is
gradually built up with increasing τd due to enhanced n1,e and n1,h around resonance, while two
side peaks become weakened and disappear at the same time due to weakened Rabi oscillations.
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Fig. 8. β0(ωsp) (upper-left panel) and |Etot −Esp| (upper-right panel), as well as n�,e and
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710 Å in the lower panels.

300 4

200

250

300

 1000
 500
 250

T=300 K

sp
=10 meV

(c
m

-1
)

3

4

 1000
 500
 250

T=300 K

sp
=10 meV

4  a
.u

.)

50

100

150

a
b

s(
p
)

1

2

) 
  

 (
1

0
-4

-50 -25 0 25 50

0

- (E + + ) (meV)
-50 -25 0 25 50
0

P
e
m
(

(E + + ) (meV)p
- (E

G
+

1,e
+

1,h
) (meV) - (E

G
+

1,e
+

1,h
) (meV)

Fig. 9. Probe-field absorption coefficient βabs(ωp) (left panel) and spontaneous emission
of a quantum dot Pem(ω) (right panel) as functions of h̄ωp − (EG + ε1,e + ε1,h) and h̄ω −
(EG + ε1,e + ε1,h), respectively, are presented. Here, comparisons of the results with three
values of SPP-field amplitudes Esp = 250, 500 and 1000 kV/cm are given. The insets of
both panels are enlarged views of the peaks.

#217702 - $15.00 USD Received 23 Jul 2014; accepted 16 Sep 2014; published 30 Oct 2014
(C) 2014 OSA 3 November 2014 | Vol. 22,  No. 22 | DOI:10.1364/OE.22.027576 | OPTICS EXPRESS  27599



20 4

10

 10
 0
 -10

E
sp

=1000 kV/cm
T=300 K

(c
m

-1
)

3

 10
 0
 -10

E
sp

=1000 kV/cm
T=300 K

-4
 a

.u
.)

0

10

a
b
s(

p
)

1

2

(
) 

  
 (

1
0

-

-50 -25 0 25 50

0

x100

- (E + + ) (meV)
-50 -25 0 25 50
0

P
e
m
(

(E + + ) (meV)p
- (E

G
+

1,e
+

1,h
) (meV) - (E

G
+

1,e
+

1,h
) (meV)

Fig. 10. βabs(ωp) (left panel) and Pem(ω) (right panel) as functions of h̄ωp − (EG + ε1,e +
ε1,h) and h̄ω − (EG + ε1,e + ε1,h), respectively, are displayed. Here, we show the compar-
isons with three values of SPP-field detunings Δh̄ωsp = 0 and ±10 meV. The label ×100
for zero SPP-field detuning indicates the result is multiplied by a factor of 100.

6

8 sp
=10 meV (300K)

E
sp

=1000 kV/cm

-4
 a

.u
.)

40

50

60

E
sp

=1000 kV/cm

sp
=10 meV (300K)

(c
m

-1
)

2

4

P
e

m
(

) 
  

 (
1
0

10

20

30

a
b

s(
p)

(

-50 -25 0 25 50
0

2P

(E + + ) (meV)

-40 -20 0 20 40

0

10

(E + + ) (meV) - (E
G
+

1,e
+

1,h
) (meV)

p
 - (E

G
+

1,e
+

1,h
) (meV)
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Interestingly, we also find that the central peak of Pem(ω) slightly decreases at τd = 1 ps, which
agrees with the observed start of significant phonon absorption seen in the lower-left panel of
Fig. 12.

In order to explore the dynamics of e-h pair radiative recombination in our system, a wide
pulse with a full-pulse width around 300 ps is required, as displayed in Fig. 14. From the upper-
middle panel of this figure, we find that β0(ωsp) starts with a resonant dip due to a strong photon
dressing effect, then shifts to a sole peak at Δh̄ωsp = 0 as τ0 ≥ 400 ps where a steady state is
almost reached in the linear-response regime. Accordingly, the level populations n1,e and n2,e in
the lower two panels show a transition from an initial non-resonant behavior to a final resonant
behavior. This is accompanied by dramatically reduced level populations due to the start of a
radiative recombination process for photo-excited e-h pairs.

Recombination dynamics for e-h plasmas can also be demonstrated clearly by the time-
delayed probe-field absorption as well as by the time-resolved spontaneous emission, as shown
in Fig. 15. As presented in the left panel of this figure, we find that the initial weak absorption
and gain peaks (see the inset) in βabs(ωp) occur at τd = 200 ps and are replaced by a strong
single absorption peak due to a suppressed photon dressing effect and phase-space blocking.
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Fig. 12. β0(ωsp) (upper-left panel) and |Etot −Esp| (upper-right panel), as well as n1,e
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Gaussian-shape laser pulse with pulse width Tp = 500 fs. Here, Esp = 500 kV/cm is taken,
and the other parameters are the same as those in Fig. 3. The labels ×10 and ×105 in the
upper-right panel indicate that the results are multiplied by factors of 10 and 105, respec-
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Fig. 14. β0(ωsp) (upper-middle panel), n1,e and holes n2,e (lower two panels), as functions
of Δh̄ωsp at different detection times τ0 for a wide laser pulse with pulse width Tp = 300 ps.
Here, Esp = 500 kV/cm is taken, and the other parameters are the same as those in Fig. 3.
The labels ×0.05 in the upper-middle panel indicate that the results in the upper panel for
τ0 = 60 and 120 ps are multiplied by a factor of 0.05.

On the other hand, from the right panel of the same figure, we see that the initial central peak
in Pem(ω) is increased very rapidly due to accumulation of photo-excited e-h pairs and ac-
companied by the reduction of two side peaks resulting from the weakened Rabi oscillations.
Importantly, the very-strong central peak in Pem(ω) is significantly reduced at τd = 200 ps,
indicating the start of a radiative-recombination process for photo-excited e-h plasmas. This re-
combination process is continuously enhanced with the increasing delay time τd and suppresses
the central peak in Pem(ω) after τd ≥ 400 ps due to draining out the photo-generated electrons
and holes at the same time.

4. Conclusions and remarks

In conclusion, we have demonstrated the possibility of using a SPP field to control the optical
gain and absorption of another passing light beam due to their strong nonlinear field coupling
mediated by electrons in the quantum dot. We have also predicted the coherent conversion of a
surface-plasmon-field photon to a spontaneously-emitted free-space photon, which is simulta-
neously accompanied by another pair of blue- and red-shifted photons.

Although we studied only the coupling of a SPP field to a single quantum dot in this paper for
the simplest case, our formalism can be generalized easily to include many quantum dots. The
numerically-demonstrated unique control of the effective photon-photon coupling by the quan-
tum dot can be used for constructing an optical transistor, where the ‘gate’ photon controls the
intensity of its ‘source’ light beam. These optical transistors are very useful for speeding up and
improving the performance of fiber-optic communication networks, as well as for constructing
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Fig. 15. βabs(ωp) (left panel) and Pem(ω) (right panel) as functions of h̄ωp − (EG + ε1,e +
ε1,h) and h̄ω − (EG + ε1,e + ε1,h), respectively, at different delay times τd for a Gaussian-
shape laser pulse with pulse width Tp = 300 ps. Here, Esp = 500 kV/cm and Δh̄ωsp = 5 meV
are assumed, and the other parameters are the same as those in Fig. 3. The inset in the upper-
left panel shows an enlarged view for the gain and absorption peaks for small delay times.
The labels ×10 for τd = 50 and 100 ps in the left panel, as well as the label ×0.02 in the
right panel, indicate that the results are multiplied by a factor of 10 and a factor of 0.02,
respectively.

quantum information and developing optical digital computers.
Furthermore, instead of a resonant coupling to the lowest pair of electron-hole energy lev-

els, we may select the surface-plasmon frequency for resonant coupling to the higher pair of
electron-hole levels. In such a case, the optical pumping from the intense surface-plasmon near-
field could create a population inversion with respect to the ground pair of electron-hole levels
by emitting thermal phonons, leading to a possible lasing action if the optical gain can over-
come the metal loss for the surface plasmons. Such a surface-plasmon quantum-dot laser would
have a beam size as small as a few nanometers beyond the optical diffraction limit, and it is ex-
pected to be very useful for spatially-selective illumination of individual molecules or neuron
cells in low-temperature photo-excited chemical reactions or optogenetics and neuroscience.

A. Results Related to the Electronic States of a Quantum Dot

We have employed a box-type potential with hard walls to model a quantum dot, which is given
by

V (r) =
{

0 , 0 ≤ xi ≤ Li for i = 1, 2, 3
∞ , otherwise

, (73)

where the position vector r = (x1,x2,x3), and L1, L2 and L3 are the widths of the potential in
the x1, x2 and x3 directions, respectively. The Schrödinger equation for a single electron or hole
in a quantum dot is written as

− h̄2

2m∗

[
∂ 2

∂x2
1

+
∂ 2

∂x2
2

+
∂ 2

∂x2
3

+V (r)
]

ψ(r) = ε ψ(r) , (74)

where the effective mass m∗ is m∗
e for electrons or m∗

h for holes. The eigenstate wave-function
associated with Eq. (74) is found to be
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ψn1,n2,n3(r) =

√
2
L1

sin

[(
n1π
L1

)
x1

]√
2
L2

sin

[(
n2π
L2

)
x2

]√
2
L3

sin

[(
n3π
L3

)
x3

]
, (75)

which is same for both electrons and holes, and the eigenstate energy associated with Eq. (74)
is

εn1,n2,n3 =
h̄2

2m∗

[(
n1π
L1

)2

+

(
n2π
L2

)2

+

(
n3π
L3

)2
]
, (76)

where the quantum numbers n1, n2, n3 = 1, 2, · · ·.
By using the calculated bare energy levels in Eq. (76), the dressed electron (λ e

α ) and hole
(λ h

α ) energy levels under the rotating wave approximation take the forms [2]

λ e
α(ω|t) = λ h

α(ω|t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
2

(
h̄ω +

√
[EG(T )+ εe

α + εh
α − h̄ω]2 +4|M eh

α,α(t)|2
)

if h̄ω ≤ EG(T )+ εe
α + εh

α

1
2

(
h̄ω −

√
[EG(T )+ εe

α + εh
α − h̄ω]2 +4|M eh

α,α(t)|2
)

if h̄ω ≥ EG(T )+ εe
α + εh

α

, (77)

where the composite index α = {n1, n2, n3}. Moreover, we obtain the energy levels of dressed
electrons εe

α(ω|t) = λ e
α(ω|t)+(εe

α − εh
α)/2 and εe

�(ω|t) = εe
� +EG(T )/2 for � �= α . Similarly,

we obtain the energy levels of dressed holes εh
α(ω|t) = λ h

α(ω|t)+ (εh
α − εe

α)/2 and εe
j(ω|t) =

εh
j +EG(T )/2 for j �= α .
Based on the calculated wave-functions in Eq. (75), the form factors introduced in Eqs. (11)

and (12) can be obtained from

F e
n1,n2,n3;n′1,n′2,n′3

(q) = F h
n1,n2,n3;n′1,n′2,n′3

(q) = Q
(1)
n1,n′1

(q1)Q
(2)
n2,n′2

(q2)Q
(3)
n3,n′3

(q3) , (78)

where the wave vector q = (q1,q2,q3) and we have introduced the following notation for j =
1, 2, 3

Q j
n j ,n′j

(q j) =

(
2
Lj

) L j∫
0

dx j e
iq jx j sin

[(
n jπ
Lj

)
x j

]
sin

[(
n′jπ
Lj

)
x j

]
. (79)

Moreover,the overlap of the electron and hole wave-functions in this model can be easily cal-
culated as

∫
d3rψe

n1,n2,n3
(r)ψh

n′1,n′2,n′3
(r) = δn1,n′1 δn2,n′2 δn3,n′3 . (80)

The interband dipole moment dc,v = dc,v êd at the isotropic Γ-point, which is defined in Eq. (32),
can be calculated according to the Kane approximation [35, 36]

dc,v =

√
e2h̄2

2m0 EG(T )

(
m0

m∗
e
−1

)
. (81)

Furthermore, the direction of the dipole moment êd is determined by the quantum-dot energy
levels in resonance with the photon energy h̄ω .
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