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Photonic graphene, a honeycomb lattice of evanescently
coupled waveguides, has provided a superior platform
for investigating a host of fundamental phenomena such
as unconventional edge states, synthetic magnetic fields,
photonic Landau levels, Floquet topological insulators,
and pseudospin effects. Here, we demonstrate both exper-
imentally and numerically, topological vortex degeneracy
lifting and Aharonov–Bohm-like interference from local de-
formation in a photonic honeycomb lattice. When a single
valley is excited, lattice deformation leads to the generation
of a vortex pair due to the lifting of degeneracy associated
with pseudospin states. In the case of double-valley excita-
tion, we observe the Aharonov–Bohm-like interference
merely due to the deformation of the graphene lattice,
which gives rise to an artificial gauge field. Our results
may provide insight into the understanding of similar phe-
nomena in other graphene-like materials and structures.
© 2017 Optical Society of America
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Since graphite monolayers were first isolated in a controlled
way, graphene has attracted an ever increasing interest due
to its striking electronic, structural, and mechanical properties
as an extraordinary two-dimensional material, as well as the
many intriguing fundamental phenomena mediated by its
unique bandgap structure, including the anomalous quantum
Hall effect, Klein tunneling, and the absence of back scattering

[1–3]. Indeed, much of the underlying physics arises from the
special symmetry and linear band dispersion of the graphene
honeycomb lattices (HCLs), which has drawn interest in ex-
ploring artificial HCLs as a platform to mimic the transport
dynamics of massless Dirac fermions in natural carbon-based
graphene. Such “artificial graphene” [4] has been proposed
and demonstrated in a number of settings, including photonic
lattices [5,6]. The motivation for studying this artificial gra-
phene is that they can be easily accessed, even in regimes where
it is difficult or impossible for natural graphene. It has been
demonstrated that graphene-like optical lattices loaded with
ultracold atoms could be employed for measuring geometric
phases with high momentum resolution, enabling full charac-
terization of Bloch band topology [7,8].

One of the intriguing phenomena that has also attracted
interdisciplinary interest is “strain engineering” and associated
effects arising from synthetic magnetic fields (gauge fields).
It was theoretically proposed that strain can be used to engineer
graphene electronic states by inducing a synthetic field, leading
to a pseudo-magnetic quantum Hall effect [9]. Such strain-
induced pseudo–magnetic fields, greater than 300 T, were suc-
cessfully demonstrated in graphene nanobubbles, exhibiting
the expected scaling behavior for Landau levels in graphene
[10]. It has also been suggested that even in the limit of a weak
gauge field, non-trivial fundamental effects, such as the
Aharonov–Bohm (AB) interferences from local deformations
in graphene, can be realized [11]. Meanwhile, artificial gauge
fields have been the subject of intensive research in ultracold
atoms [12–14] and in photonics [15–18].

Photonic graphene [5], a honeycomb array of evanescently
coupled waveguides, has proven to be particularly useful for
investigating graphene physics in various optical settings
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[19–27]. The photonic analogy of graphene arises not only due
to the HCL structure, but also the similarity between the para-
xial equation describing light propagation in HCLs and the
Schrödinger equation for electrons in graphene. The HCLs
can be conveniently established in optical materials,
either by nonlinear optical induction or by the femtosecond
laser writing [23], in which the Bloch modes with a desired
momentum can be selectively excited, and the wavefunction
including the phase can be directly measured. This has led
to the direct observation of a host of interesting phenomena
in photonic graphene, including unconventional edge states,
strain-induced pseudomagnatic fields and photonic Landau
levels, photonic Floquet topological insulators, and pseudo-
spin-mediated vortices generation [23–27]. Inspired by the
theoretical prediction [11] that the AB interference [28] can
occur from local deformations in real carbon-based graphene
and the experimental demonstration of pseudomagnetic effect
in a strained artificial photonic graphene [25], one may wonder
if the AB interference can be observed in photonic graphene by
applying deformation to the optically induced HCLs.

In this Letter, we demonstrate deformation-induced vortex
degeneracy lifting and Aharonov–Bohm-like interference in an
optically induced photonic honeycomb lattice. Specifically, by
using a simple yet effective method, we can generate photonic
graphene lattices with desired local index deformation. By send-
ing a probe beam with its momentum matched onto one of the
K valleys, both sublattices are equally excited so no topological
vortex is created due to the degeneracy of pseudospin states.
However, by adding a deforming beam to induce index defor-
mation in the HCLs, a pair of vortices is observed in the probe
beam due to the degeneracy lifting of vortices. Moreover, by
sending two probe beams to excite two equivalent K valleys,
we observe a phase shift in the vortex interferogram from
the Bragg-reflected component before and after introducing
deformation, analogous to the predicted AB interference from
deformation in graphene.

Our experimental setup used for optical induction and de-
formation of photonic graphene is illustrated in Fig. 1. A two-
dimensional HCL is induced in a biased photorefractive crystal
(SBN:60) by sending an ordinarily polarized diffused laser
beam (488 nm) through an amplitude mask, as used in our
earlier work [27,29]. After imaging the mask onto the input
facet of the crystal, a HCL pattern is created and sent through
the crystal. By employing a proper spatial bandpass filter at the

Fourier plane of the mask, the Talbot self-imaging effect can be
totally eliminated, so that the partially coherent HCL pattern
remains invariant during the propagation throughout the crys-
tal (blue path). With a proper electric bias field, this intensity
pattern induces quasi-periodic index changes in the otherwise
uniform crystal, forming a honeycomb waveguide array or in-
dex lattice. To introduce deformations in the lattice structure, a
relatively broad Gaussian beam (also ordinarily polarized) is
sent through another rotating diffuser, propagating collinearly
with the lattice beam (green path). This Gaussian beam could
also be focused to detect the Brillouin zone (BZ) spectrum [30].
In addition, an extraordinarily polarized Gaussian beam (or a
pair of Gaussian beams selected from a three-beam interference
pattern) is used as a probe, which is momentum matched to the
targeted valleys of the graphene lattice (red path). The near-
field and far-field patterns of the lattice-inducing and probe
beams are monitored with imaging lenses and a CCD camera.

Typical numerical and experimental results of the photonic
graphene lattice, its BZ spectrum, as well as a Gaussian-beam
induced nonuniform deformation, are presented in Fig. 2. By
fine-tuning the weak nonlinearity experienced by the ordinarily
polarized lattice-inducing beam (as controlled by the beam
intensity, coherence, as well as the bias field), a HCL of index
modulation is established [Figs. 2(a) and 2(e)]. The BZ
spectrum measured with a partially incoherent probe beam
[Fig. 2(f )] matches perfectly with that obtained from a numeri-
cal calculation [Fig. 2(b)], where K marks one of the six Dirac
points, as shown in Fig. 2(g) [see also Fig. 2(c) for the band
diagram centered on the K valley]. In the right two panels
[Figs. 2(d) and 2(h)], a broad Gaussian beam (see the inserts)
is added to the lattice induction, which results in a local defor-
mations in the otherwise uniform photonic graphene, as theo-
retically proposed for deforming a sheet of graphene to
demonstrate the AB interference [11]. Since the lattice beam
is nondiffracting and the Gaussian beam is loosely focused,
the deformed graphene lattice remains invariant along the
10 mm long crystal.

Fig. 1. Schematic of the experimental setup for generation and
probing of a photonic HCL with local deformation. RT, reversed tele-
scope; RD, rotating diffuser; BS, beam splitter; L, lens; MS, amplitude
mask; M, mirror; F, spatial bandwidth filter; SBN, strontium barium
niobate. The blue path is for optically inducing a uniform honeycomb
photonic lattice; the green path is for introducing local deformation
in the lattice; the red path is for probing the lattice with a single
(or double) beam momentum matched to a single (double) valley.

Fig. 2. Optically induced uniform (left column) and deformed
(right column) photonic HCL. (a)–(d) Numerical simulation results
of the lattice structure, Brillouin zone spectrum, band structure near
the Dirac point, and the deformed lattice (the deforming beam at in-
put is shown in the inset). The corresponding experimental results of
(a), (b), and (d) are presented in (e), (f ), and (h), where the measured
BZ spectrum agrees well with the calculated spectrum. (g) Schematic
of the first BZ of the induced lattice, with six bright spots representing
measured spectrum of the lattice. To selectively excite a one-set valley
point with an identical “spin” property, the input beam is momentum
matched to the corresponding K points in the BZ of the lattice.
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We first look into the case of single-beam excitation of a
single valley in a uniform graphene lattice, as shown in
Fig. 3. To selectively excite a valley, the spectrum of the input
probe beam is set to overlap with the corresponding K point in
the BZ of the lattice. As shown in Figs. 3(a) and 3(e), when a
single valley (marked as K ) is initially excited, two new spectral
components are generated at the other two K valleys due to
Bragg reflection. [Note that Figs. 3(a) and 3(e) are the output
spectra of the probe beam, while at the input only a single valley
is initially excited.] Taking one of the Bragg-reflected compo-
nents and performing an inverse Fourier transform to the real
space, we could not identify any topological charge in the in-
terferograms [Figs. 3(c) and 3(g)]. The phase diagram from
numerical simulation shows no net vorticity [Fig. 3(d)], and
the interference from two Bragg-reflected components mea-
sured from the experiment also shows no phase singularity
[Fig. 3(h)]. This is not surprising from the viewpoint of pseu-
dospin states [27,31,32]: different pseudospin states can be ex-
cited, depending on the initial position of the probe beam
relative to the HCL. If the probe beam only selectively excites
either sublattice A or sublattice B, a pseudospin state is revealed
corresponding to a topological charge generation. In contrast, if
the probe beam excites both sublattices simultaneously, oppo-
site pseudospin states are equally excited which leads to no net
vorticity. The results in Fig. 3 correspond to this latter case: a
single Gaussian beam excites both sublattices equally, which
does not result in any net vorticity due to lattice pseudospin;
thus, no fringe bifurcation in the interferogram is observed.
Note that the apparent difference between the output patterns
from the numerical simulation [Fig. 3(b)] and the experiment
[Fig. 3(f )] is mainly due to the deviation of experimental con-
ditions from those used in simulations.

In contrast, in a nonuniformly deformed HCL lattice
(strained photonic graphene), the same single-beam excitation
leads to dramatically different behavior. For direct comparison,
the corresponding results are shown in Fig. 4, with all exper-
imental conditions the same as in Fig. 3, except for adding the

deforming beam. In this case, one can clearly see the generation
of a pair of vortices with opposite vorticity, indicating that the
vortex (pseudospin) degeneracy is lifted due to lattice deforma-
tion. Intuitively, one might understand this from the deformation-
induced gauge field in graphene [33]. The gauge field due to
lattice deformation induces a small energy gap near the Dirac
points, so the two opposite pseudospin states associated with
the two sublattices are separated, leading to the lifting of the
pseudospin-mediated vortex degeneracy. The underlying me-
chanism certainly merits further theoretical investigation.

To demonstrate the Aharonov–Bohm interference in de-
formed photonic graphene, we create an interference scheme
so that two light waves are incoming from a geometrically iden-
tical path [11,28]. Since our probe beam comes from the am-
plitude mask (with three holes) which could generate one set of
the triangular lattices corresponding to the graphene lattice (see
Fig. 1), we can simply use only two beams, momentum
matched to two K valleys. Then these two beams will pass
through the lattice structure and be Bragg reflected at the third
K valley, where they interfere as if coming from two identical
paths. Typical results are shown in Fig. 5, where (a)–(d) and
(e)–(h) depict the numerical and experimental results, respec-
tively, and both the spectra and interferograms before and after
the lattice deformation are presented for direct comparison.
Although the geometrical paths for light coming from the
equivalent valleys [two bright spots in the spectrum, as shown
in Fig. 5(e)] are the same, the interference pattern clearly dis-
plays an offset due to the action of the deforming beam, which
gives rise to an artificial gauge field that brings about an appre-
ciable phase shift. We point out that the Gaussian index profile
superimposed to the HCL potential in the induced photonic
graphene represents an optical analogy of the out-of-plane de-
formation of the graphene sheet from a “Gaussian bump” de-
scribed in [11,34,35]. Experimentally, it is difficult to measure
the phase shift as a function of the deformation strength.
Although the underlying theory for our optically induced de-
formation in HCLs is yet to be developed, these results indicate
the existence of AB-like interference analogous to those pre-
dicted in [11].

It should be pointed out that, in the case of single-beam ex-
citation, no vortex generation is observed in uniformHCLs since
both sublattices are equally excited, leading to the degeneracy of

Fig. 3. Probing the HCLs with single-valley excitation before intro-
ducing deformation. (a)–(d) and (e)–(h) are the numerical simulations
and experimental results, respectively. (a) and (e) depict the Fourier
spectrum of the probe beam after propagating through the lattice,
while its input spectrum is momentum matched to a K valley.
(b) and (f ) are the beam patterns of one of the Bragg-reflected spectral
components [marked by dashed circles in (a) and (e)]. (c) and (g) are
the interferograms between a tilted broad beam (quasi-plane wave) and
the beam shown in (b) and (f ), showing no topological charge. (d) is
the phase diagram of the beam shown in (b), and (h) is the interfero-
gram of the two Bragg-reflected components by filtering out the input
components in k-space, showing again no vorticity.

Fig. 4. Probing the HCLs with single-valley excitation with local de-
formation. All experimental conditions (and, thus, the figure captions)
remain the same as in Fig. 3, except for introducing a deforming beam
described in Fig. 1. The generation of a vortex pair is evident due to de-
formation which lifts the degeneracy. The white arrows in Figs. (c), (g),
and (h) serve as an eye-guide for the location of generated vortices.
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the pseudospin states. In this case, the deformation leads to the
lifting of topological vortex degeneracy, shifting the vortices to
opposite directions. On the other hand, in the case of two-beam
excitation, a vortex is observed even in the uniform lattice
[Figs. 5(c) and 5(g)], corresponding to the selective excitation
of one of the pseudospin states (sublattice degree of freedom)
[27]. In the latter case, the deformation leads to the shifting
of the vortex location, which may result from the phase shift
introduced by the deformation-induced gauge field.

We have demonstrated, both experimentally and numerically,
using a simple yet effective platform of optically induced HCLs
and lattice deformation, topological vortex degeneracy lifting and
Aharonov–Bohm-like interference from local deformation in
photonic graphene. The introduction of synthetic magnetic
effects in optical systems opens the door to a wide range of
new physical effects and applications. Our approach may be
adopted to tackle many interesting fundamental questions.
For example, can a pseudomagnetic field be observed using strain
in a photonic crystal slab geometry (that is, a two-dimensional
geometry with a finite height in the third direction) or in a fully
three-dimensional photonic crystal for control of the high den-
sity of states? Can terahertz generation be enhanced in photonic
crystals via strain? Can lasing thresholds in photonic crystals be
reduced via engineering pseudomagnetic fields? What is the non-
linear enhancement associated with the Landau levels? The
strained photonic lattice provides an excellent experimental set-
ting for probing both linear and nonlinear effects of magnetism
in optics. Furthermore, the recent observation of parity-time
(PT) symmetry breaking in optics [36,37] has very intriguing
implications in honeycomb PT-symmetric lattices, which sug-
gests that the strained honeycomb lattice may provide a context
for understanding the effect of magnetism on the PT transition,
and on non-Hermitian optics in general.
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Fig. 5. Probing the HCLs with two-valley excitation before and after
introducing deformation. (a)–(d) and (e)–(h) are numerical and exper-
imental results, respectively. (a) and (e) depict the Fourier spectrum of
the probe beam after propagating through the undeformed lattice, while
at input only the two marked K valleys are initially excited. (b) and
(f) are the corresponding results with lattice deformation. (c), (g) and
(d), (h) are the interferograms obtained by interfering a plane wave with
the Bragg-reflected component at the third K valley before and after
introducing the deformation, respectively, where there is a clear shift of
vortex position (fringe bifurcation).
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