
Calculation of vectorial diffraction
in optical systems
JEONGMIN KIM,1,2 YUAN WANG,1,2 AND XIANG ZHANG1,2,*
1NSF Nanoscale Science and Engineering Center, 3112 Etcheverry Hall, University of California, Berkeley, California 94720, USA
2Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
*Corresponding author: xiang@berkeley.edu

Received 22 November 2017; revised 2 February 2018; accepted 3 February 2018; posted 5 February 2018 (Doc. ID 314083);
published 12 March 2018

A vectorial diffraction theory that considers light polarization is essential to predict the performance of optical
systems that have a high numerical aperture or use engineered polarization or phase. Vectorial diffraction in-
tegrals to describe light diffraction typically require boundary fields on aperture surfaces. Estimating such boun-
dary fields can be challenging in complex systems that induce multiple depolarizations, unless vectorial ray tracing
using 3 × 3 Jones matrices is employed. The tracing method, however, has not been sufficiently detailed to cover
complex systems and, more importantly, seems influenced by system geometry (transmission versus reflection).
Here, we provide a full tutorial on vectorial diffraction calculation in optical systems. We revisit vectorial dif-
fraction integrals and present our approach of consistent vectorial ray tracing irrespective of the system geometry,
where both electromagnetic field vectors and ray vectors are traced. Our method is demonstrated in simple optical
systems to better deliver our idea, and then in a complex system where point spread function broadening by a
conjugate reflector is studied. © 2018 Optical Society of America

OCIS codes: (260.1960) Diffraction theory; (180.0180) Microscopy; (080.1510) Propagation methods.
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1. INTRODUCTION

Vectorial diffraction theory is fundamental to the study of
optical systems that have a high numerical aperture (NA) or use
specific polarization, such as radial/azimuthal polarization, or
engineered phase profiles. Such optical systems often appear
in many important applications, including modern optical
microscopy integrated with adaptive optics and point spread
function (PSF) engineering, single molecule tracking, optical
trapping, photolithography, and laser direct writing. The vector
theory, compared with paraxial scalar diffraction theory, is rig-
orous because it considers polarization and nonparaxial propa-
gation of light as well as apodization of optical systems [1]. It
usually provides vectorial diffraction integrals, derived from
Green’s theorem as a solution of wave equations, to express
a diffracted electromagnetic field [2].

The surface integrals for light diffraction require a knowledge
on the integrand (or boundary) information of vectorial fields
typically at the system’s exit pupil. For simple focusing and
imaging systems, estimating the approximate boundary fields
based on geometric grounds is not difficult [3–10], from which
the Debye–Wolf integral [3] is often evaluated. For systems that
undergo frequent and complex depolarizations during light
propagation, however, it is nontrivial to obtain boundary
information unless a ray tracing concept is employed. The 3 × 3

Jones matrix formalism for tractable three-dimensional polariza-
tion tracing of electromagnetic fields was introduced over a few
seminal papers [11–14] to calculate vectorial diffraction. It is not
as sophisticated as software implementation-level tracing in ray
optics [15,16], yet it is very effective to estimate the pupil fields.
However, many important details on how to apply this method,
especially for complicated systems, have not been fully ad-
dressed. For instance, many tracing examples show the sequence
of Jones matrices applied, but lack information about the angle
and sign used in each matrix, which is critical to understand the
method. Moreover, the latest tutorial review paper [14] states
that a type of system geometry (transmission versus reflection)
affects a coordinate system definition to describe ray vectors,
which seems to be causing some inconsistency in field tracing.
We believe that not only the field vector but also the ray vector at
the exit pupil must be determined by tracing (rather than set
directly from the coordinate definition [14]), so that the vectorial
ray tracing technique becomes consistent under any system
geometry.

On the other hand, commercial optical design software such
as ZEMAX and CODE V supports polarization ray tracing.
Some support even vectorial diffraction calculation to a certain
degree. Yet, to our knowledge, a dipole-like point source is not
implemented, which is a widely accepted model of fluorescent
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dye molecules in fluorescence microscopy [7]. Also, the tools
lack an ideal model of a high NA objective obeying the Abbe’s
sine condition [17], which can be extremely useful for most
application researchers who have no access to the confidential
lens data of commercial microscope objectives. Thus, an accu-
rate calculation of vectorial diffraction is limited.

In this paper, we present a complete tutorial for vectorial
diffraction calculation. We first revisit several vectorial diffrac-
tion integrals with important features associated with the use of
each integral. Then, we offer our tutorial on the 3 × 3 Jones
matrix formalism to estimate the approximate boundary fields
(both field vectors and ray vectors residing in transverse man-
ner) needed to evaluate the diffraction integrals. Our tracing
method is applicable consistently to any type of system geom-
etry and is well-suited for complex optical systems. Diffraction
calculations over several case examples of simple and complex
imaging systems are demonstrated, followed by the physical in-
terpretation of the derived PSF. We also study PSF broadening
by an intermediate conjugate mirror.

2. VECTORIAL DIFFRACTION INTEGRALS

Optical diffraction is often described by an integral solution
of the time-independent Helmholtz wave equation. The
Stratton–Chu integral [18] derived from a vector analog of
Green’s theorem [2] is one for any arbitrary-shaped surface
of diffraction aperture geometry as

~E�~x� � 1

4π

Z Z
Σ
�iω�N̂ × ~BΣ�~x 0��G � �N̂ × ~EΣ�~x 0�� × ∇ 0G

� �N̂ · ~EΣ�~x 0��∇ 0G�d2~x 0: (1)

It implies that an electric field ~E , complex amplitude in the
exp�−iωt� convention, at an observation point ~x in Fig. 1 is
determined by boundary electric field ~EΣ and magnetic field
~BΣ on the diffraction aperture Σ depicted by ~x 0 (with an infini-
tesimal area element of d 2~x 0 ), whose inward surface normal
is N̂ . We use a hat symbol to denote a unit vector. G �
exp�ikR�∕R is the Green’s function with ~R � ~x − ~x 0, and ∇ 0

depicts a differential operator with respect to ~x 0. ω is a temporal
angular frequency of the wave with a dispersion of k � ω

ffiffiffiffiffi
μϵ

p
,

where k denotes the wave number, μ the permeability, and ϵ the

permittivity in a medium. Many optical systems pertain to
far-field diffraction (R ≫ k−1), where ∇ 0G ≈ −ikGR̂. Then,
with ~BΣ � ffiffiffiffiffi

μϵ
p

k̂Σ × ~EΣ, the far-field Stratton–Chu integral
can be derived as

~E�~x� � −
ik
4π

Z Z
Σ
G��N̂ · k̂Σ�~EΣ − �N̂ · ~EΣ�k̂Σ − �~EΣ · R̂�N̂

� �N̂ · R̂�~EΣ � �N̂ · ~EΣ�R̂�d2~x 0: (2)

Here, a boundary electric field and its unit propagation vec-
tor k̂Σ are required rather than a magnetic field at the pupil,
both of which are obtained by vectorial ray tracing in Section 3.

A further simplified version in widespread use is the vectorial
Debye–Wolf integral [3,19], typically over spherical diffraction
geometry, valid for a Fresnel number much larger than one
[20], as

~E�~x� � −
ik
2π

Z Z
Ω
~EΣei

~kΣ·~xdΩ; (3)

where dΩ � sin θdθdϕ is a solid angle of d 2~x 0. This formula
can also be derived directly from Eq. (2) as N̂ ≈ k̂Σ in a spheri-
cal exit pupil and if the observation point ~x is close to the geo-
metrical focus in Fig. 1(b), N̂ ≈ R̂ and ~R ≈ �~x · N̂ � f �N̂ [4].
Here, the spherically converging nature of ~EΣ by exp�−ikf �∕f
at the exit pupil was added implicitly. This integral expression is
physically interpreted as a superposition of plane waves [19],

propagating along ~kΣ (all pointing to the focus) with a field
strength of ~EΣ, within a solid angle (Ω) of the exit pupil Σ
set by numerical aperture. As a result, an axially symmetric
intensity distribution is expected. Note that an optical system
with a smaller Fresnel number (roughly 10 or below) requires
Eq. (2) or the scaled Debye–Wolf integral [21,22], where focal
shifts emerge [23,24]. Small optical aberrationsW �θ;ϕ� can be
approximately incorporated to ~EΣ as exp�ikW � [19] or treated
more rigorously as [25]. Often, circular aperture systems allow
an elimination of the azimuthal integral on ϕ under cylindrical
coordinate �ρ;φ; z� of ~x by [3]Z

h2πi

�
cos�mϕ�
sin�mϕ�

�
eiρ cos�ϕ−φ�dϕ � 2πimJm�ρ�

�
cos�mφ�
sin�mφ�

�
;

(4)

where Jm�ρ� is the first kind, m order Bessel function.
We emphasize that the spherical coordinate �f ; θ;ϕ� here is

an alternative to the default reference Cartesian coordinate

�x; y; z� to describe the pupil at ~x 0 (not the ray vector ~kΣ as
done in Refs. [12,14,26,27]). Thus, a coordinate of
�f sin θ cos ϕ; f sin θ sin ϕ; f cos θ� points at an infinitesi-
mal area element d 2~x 0 on the pupil that forms a solid angle of
dΩ, where the unit ray vector in the case of Fig. 1(b) is given as
k̂Σ � −x̂ 0; hence, (− sin θ cos ϕ; − sin θ sin ϕ; − cos θ). In gen-
eral, the ray propagation vector is to be drawn from ray tracing.
More details are provided in the next section.

Other vectorial integrals include the Luneburg integral [28],
valid for a planar aperture geometry normal to the optical axis
(~z), so

(a) (b)

Fig. 1. (a) Schematic for diffraction integrals where boundary
electromagnetic fields on ~x 0 determine a field at ~x. The enclosed sur-
face Σ can be practically reduced to a diffraction aperture in optical
systems [2,18]. (b) Light diffraction at an aperture stop in general
optical systems could be assumed to occur equivalently at the exit pu-
pil. The field in the image space is calculated by diffraction integrals
with ~EΣ and k̂Σ on Σ (typically the Gaussian reference sphere surface)
traced from the source. (x; y; z) is the reference Cartesian coordinate
and W �θ;ϕ� is the wavefront error in spherical pupil coordinate
(f ; θ;ϕ).
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Ex;y�~x� � −
1

2π

Z Z
Σ
Ex;y�~x 0�

∂G
∂z

d2~x 0;

Ez�~x� �
1

2π

Z Z
Σ

�
Ex�~x 0�

∂G
∂x

� Ey�~x 0�
∂G
∂y

�
d2~x 0; (5)

where at far-field ∂G
∂p � ikG Rp

R (where p � x; y, and z) if
~R � Rxx̂ � Ryŷ� Rzẑ. Thus, the far-field form of the integral
for Ex and Ey is equal to the first Rayleigh–Sommerfeld diffrac-
tion integral [17]. One can find out that the same far-field
integrands also result from the m-theory diffraction integral
[29,30],

~E�~x� � 1

2π
∇ ×

ZZ
G�N̂ × ~EΣ�d2~x 0: (6)

While the Debye–Wolf integral is favorable for high NA
systems with spherical pupil geometry, the Stratton–Chu
and Luneburg integrals can be more suitable for optical systems
with nonspherical geometry, such as axicons [31], focusing
through a dielectric interface [30], and ultrathin flat optics
[32,33]. The diffraction integrals can be computed directly
(e.g., in MATLAB by integral and integral2 functions) or indi-
rectly [34,35]. Intensity I�~x�, or time-averaged electric energy
density, is obtained from j~E�~x�j2. A nonmonochromatic (or
broadband) system may require a summation of each mono-
chromatic intensity over its spectral response. Magnetic fields
can be similarly calculated if interested.

3. VECTORIAL RAY TRACING

In this section, we explain how to obtain boundary field infor-
mation to evaluate diffraction integrals. The electromagnetic
fields and ray propagation vectors over exit pupils can be ap-
proximately estimated by polarization ray tracing using the gen-
eralized Jones matrices [12–14] listed in Table 1. Conceptually,
the tracing is a sequential application of these matrices in the
order that appears in an optical system. Next we provide more
details on each matrix and its use.

The tracing starts from a source whose field vector (polari-
zation) and propagation vector are known. These vectors are
defined with reference to the default Cartesian coordinate
�x; y; z� assigned to the optical system, such that the z-axis (par-
allel to the optical axis) heads in the right direction, regardless of
light traveling from left to right or from right to left. For ex-
ample, if a collimated source is linearly polarized along the
x-axis and propagates to the positive z-axis, the initial field vec-
tor is ~E � �1; 0; 0� and the wave vector is k̂ � �0; 0; 1�. In gen-
eral, ~E�x; y;ϕp� � E�x; y��cos ϕp; sin ϕp; 0�, where ϕp denotes
a polarization direction with respect to the x-axis, and E�x; y� is
a complex amplitude of the field that has to be defined if not
uniform across the beam, such as a circular Gaussian beam
exp�−�x2 � y2�∕w2

0�, where w0 denotes the beam waist.
Polarization states other than a linear polarization can also
be easily considered: ~E � �a; b exp�iδ�; 0� for elliptical polari-
zation, where jaj2 � jbj2 � 1 and δ is a phase delay between
x∕y components (a � b � 1, δ � π

2 for circular polarization).
For radial polarization, ~E � �cos ϕ0; sin ϕ0; 0�, where ϕ0 �
tan−1�y∕x� so that the field direction now depends on its
lateral position of �x; y�. Similarly, azimuthal polarization is

expressed as ~E � �− sin ϕ0; cos ϕ0; 0�. Unpolarized light can
be considered indirectly by summing each intensity from
the ϕp-polarized field incoherently over 2π rotation [3], such
that �2π�−1 Rh2πi j~E�ϕp�j2dϕp.

A point source (or object) is often approximated as an elec-
tric dipole ~p whose far-field emission at position ~r is ~E�~r� �
�r̂ × ~p� × r̂ [2]. A prefactor k2 exp�ikr�∕�4πϵr� is neglected
here. An initial ray vector is then expressed as k̂ � r̂. If a point
object is not much smaller than the wavelength, its scattered
far-field vector to start with can be obtained by the Mie theory
[36]. If a spatially isotropic source is concerned (as the far-field
dipole radiation is angle-dependent), intensity summed over all
possible dipole orientations of 4π steradian must be considered
[7]. A magnetic dipole source [2], if interested, can be treated
similarly.

Table 1. 3 × 3 Jones Matrices for Vectorial Ray Tracinga

Coordinate rotation:
�x; y; z� → �xm; ys ; z�

Rz�ϕ� �
"

cos ϕ sin ϕ 0
− sin ϕ cos ϕ 0

0 0 1

#

Ray refraction at a lens on the
meridional plane (xmz)

L�θ� � A�θ�
2
4 cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

3
5

Coordinate rotation: �xm; ys ; z� → �xp; ys ; zk�
for p-∕s- wave decomposition

Rys �θ� �
"
cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

#

Fresnel reflection/transmission
at an interface

FR �
2
4 rp 0 0
0 rs 0
0 0 1

3
5, FT �

2
4 tp 0 0
0 t s 0
0 0 1

3
5

Linear polarizer

P�ψ� �
"

cos2 ψ sin ψ cos ψ 0
sin ψ cos ψ sin2 ψ 0

0 0 1

#

Wave plate (or phase retardation plate)

W�δ;ψ� �
"
cos δ

2 � i cos�2ψ� sin δ
2 i sin�2ψ� sin δ

2 0
i sin�2ψ� sin δ

2 cos δ
2 − i cos�2ψ� sin δ

2 0
0 0 1

#

aThe coordinate system is right-handed, and thus positive rotation is
counterclockwise. �x; y; z� is the default Cartesian coordinate, xm∕ys are the
meridional/sagittal axes, and xp∕ys are the p-∕s-wave axes, respectively.
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An optical lens is the most commonly encountered element
during ray tracing. Upon refraction at the lens, an incident field
is depolarized [37]. This depolarization is typically assumed to
occur on only the meridional plane (see the illustration in
Table 1), and thus, the field must be separated into meridional
and sagittal components beforehand. This is mathematically
done by the coordinate rotation matrix Rz�ϕ�, revolving about
the optical axis ẑ by ϕ (depending on the lateral position of
the field vector of interest). Then the field vector is represented
on the �xm; ys; z� basis, where the sagittal field is unaffected upon
applying the ray refraction matrix L�θ�. Note that the ray
refraction is not a coordinate rotation and the angle θ is
positive for counterclockwise refraction about the sagittal axis
(ys). A nonparaxial lens may have apodization (e.g., A�θ� �
�n1n−12 cos jθj�1∕2 in aplanatic focusing [3,9] and its inverse
in aplanatic collimation), where n1 and n2 are refractive indices
ofmedia before and after the lens.Different forms of apodization
in Herschel, Lagrange, Helmholtz, and parabolic conditions are
explained in [34,38]. More rigorous tracing through a lens may
include the Fresnel transmission matrix as [13], but it may
be practically unnecessary. The Fresnel coefficients vary negli-
gibly for smaller incidence angles of rays at each lens interface
in both a low NA lens and a high NA objective (consisting
of a group of lenses).

Reflection and transmission at an interface are considered as
follows. Since the Fresnel coefficients [39] are derived for p-
polarized (TM, Ep) and s-polarized (TE, Es) waves, one needs
initially to decompose the field vector as such. If the interface is
planar and normal to the optical axis, the sagittal field is already
a TE field. The meridional field changes to a TM field after the
z-axis of its coordinate is aligned to the propagation direction
(zk) by the coordinate rotation matrix Rys �θ�. Then the
field vector in the new �xp; ys; zk� basis contains only
TM/TE elements as ~E � �Ep;Es; 0�. After this happens, one
can apply the Fresnel matrices that consist of the amplitude
coefficients in a dielectric interface [39] for reflection,

rp �
n2 cos θi − n1 cos θt
n1 cos θt � n2 cos θi

; rs �
n1 cos θi − n2 cos θt
n1 cos θi � n2 cos θt

;

(7)

and transmission,

tp �
2n1 cos θi

n1 cos θt � n2 cos θi
; t s �

2n1 cos θi
n1 cos θi � n2 cos θt

:

(8)

The reflection coefficients for a metallic mirror can also be
found at [40] (but −rp has to be used due to the handedness
inversion upon reflection in their coordinate definition). As the
third element of the incident field vector is zero, the (3,3)
element of the Fresnel matrices has no interaction and thus
could be defined otherwise [12,14]. Note that the reflected
and transmitted field vectors are defined at new �xp; ys; zk�
bases, whose zk axes point to reflected and transmitted ray vec-
tors, respectively. These coordinates can be transformed back
byRys �θ�, most often into �xm; ys; z� for the subsequent tracing.
If an interface (surface normal: N̂ i) is not normal to the optical
axis (that is, jN̂ i · ẑj ≠ 1), the above matrices may not be suf-
ficient for tracing. A secondary coordinate rotation around ẑk

by θzk may be needed after Rys �θ� to assure there are correct
p-∕s- fields. θzk can be decided by a geometrical requirement on
the final s-wave axis as ŷs⊥ ~N i. Otherwise, the generalized
Fresnel laws [41] may be needed.

The matrices for a linear polarizer (whose azimuthal angle of
the transmission axis from the�x axis is ψ) and a wave plate (δ:
a relative retardation between fast/slow axes; ψ : an azimuthal
angle of the fast axis from the �x axis) [14] are based on
the reference Cartesian coordinate, and must be applied with
the field vector at the same basis.

Any unequal optical path length or apodization (except
at a lens) that may occur during light propagation (although
not addressed by these matrices) can be incorporated by
multiplying the corresponding phase or amplitude term (see
Section 4.A).

We emphasize that the angles, ϕ and θ, in the Jones matrices
are defined during ray tracing and the relation of these angles
with spherical pupil coordinate �f ; θ;ϕ� is found after the trac-
ing. Also, the same sequence of matrices used to trace a field
vector traces its ray vector while keeping ~k · ~E � 0 throughout
tracing (not demonstrated before), which is later related to the
spherical coordinate when evaluating diffraction integrals. We
do not set ray directions directly with the spherical coordinate
(without tracing) as in the latest tutorial review [14]. Our way
of vectorial ray tracing is consonant with any type of system
geometry: transmission, reflection, or both.

It should be noted that the tracing method presented here
holds for limited situations. The light source (or object) should
be an on-axis, in-focus point source or a collimated source with
no field angle. Any thick lens or objective lens is simplified as a
thin lens with a spherically refracting surface, unlike the geo-
metrical ray tracing in commercial software. These restrictions,
however, in general do not diminish the effectiveness of esti-
mating the PSF of optical systems. Also, a small deviation from
ideal sources, such as defocused objects, laterally displaced
objects, and collimated beams with field angles, could be
treated by properly added aberration terms under the shift
invariance assumption [26,27]. Thus, those unideal sources
could still be traced as if they are ideal.

The use of symbolic calculation in computation software
(MATLAB, Mathematica, etc.) makes vectorial ray tracing
much more convenient as a number of matrix multiplication
increase.

4. EXAMPLES

We demonstrate vectorial ray tracing and calculation of vecto-
rial diffraction for several optical systems of practical interest.

A. High NA Focusing through a Dielectric Interface

Focusing light through index-mismatched media as shown in
Fig. 2(a) is common in microscopy and optical trapping. It is
important to know an axial PSF in those applications. We
derive axial response when a collimated, uniform input field
~Ei � �cos ϕp; sin ϕp; 0� that is linearly polarized along ϕp with

k̂i � �0; 0; 1� is focused by an aplanatic objective modeled as a
spherical aplanatic surface. To use the Stratton–Chu and
Luneburg integrals evaluated at the dielectric interface located

Research Article Vol. 35, No. 4 / April 2018 / Journal of the Optical Society of America A 529



at z1 (rather than at the exit pupil of the objective), we need an
approximate boundary field at z�1 (right after z1 toward the
origin), which is traced as
~E2�R−1

z �ϕ0�Rys �θ2�FTRys �−θ1�CpL�−θ1�Rz�ϕ0�~Ei

��n−11 cosθ1�12Cp

×

2
64
tp cosθ2 cos2ϕ0� t s sin2ϕ0 �tp cosθ2− t s�cosϕ0 sinϕ0

�tp cosθ2− t s�cosϕ0 sinϕ0 tp cosθ2 sin2ϕ0� t s cos2ϕ0

tp sinθ2 cosϕ0 tp sinθ2 sinϕ0

3
75

×
�
cosϕp

sinϕp

�
;

k̂2∝R−1
z �ϕ0�Rys �θ2�FTRys �−θ1�L�−θ1�Rz�ϕ0�k̂i

∝ �−sinθ2 cosϕ0;−sinθ2 sinϕ0;cosθ2�; (9)

where ϕ0 denotes an azimuthal angle by the �x; y� location of
the initial field vector, θ1 the ray refraction at the objective lens,
and θ2 the refraction angle at the interface with tp and t s
in Eq. (8). The matrix Rz separates the incident field to
meridional/sagittal fields as illustrated in Fig. 2(a), from
which the clockwise ray refraction L�−θ1�, including the
apodization of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1∕n1 · cos θ1

p
, is applied. The ray propagation

in n1 medium (k1: wave number) from the refracting surface
of the objective to z−1 adds a complex factor Cp �
f �jz1j cos−1 θ1�−1 exp�ik1�f � z1 cos−1 θ1��. The exponent de-
scribes the optical phase difference. f �jz1jcos−1θ1�−1 accounts
for apodization for the converging spherical wave on the inter-
face [42]. The incident TE/TM components at the interface
are found by Rys �−θ1� and the Fresnel-transmitted field by
FT changes its basis from �xp; ys; zk� back to �x; y; z� by

R−1
z �ϕ0�Rys �θ2�. Note that the ray vector k̂2 is traced with the

identical matrix sequence although FT could be omitted. One
can check k̂2 · ~E2 � 0 satisfying the physics of transverse light.

Then the traced field Eq. (9) is plugged to the far-field
Stratton–Chu integral in Eq. (2) where N̂ � �0; 0; 1� and
d 2~x 0 � ρ1dρ1dϕ1 in the cylindrical coordinate �ρ1;ϕ1; z1�
at the interface with ρ1 � jz1j tan θ1 where θ1 ∈ �0; α1�. As
the axial PSF along the optical axis is independent of the
incident polarization direction, we set ϕp � 0 to leave Ex alone
as nonzero,

Ex�z� � −
ik2
4π

Z
2π

o

Z
a

0

eik2R

R

��
Rz

R
� cos θ2

�
E2;x

�
�
Rx

R
� sin θ2 cos ϕ0

�
E2;z

�
ρ1dρ1dϕ1; (10)

where k2 � n2λ0 is a wavenumber in n2 medium, a �
jz1j tan α1, ~R � −ρ1 cos ϕ1x̂ − ρ1 sin ϕ1ŷ � �z − z1�ẑ, θ2 �
sin−1�n1∕n2 sin θ1� from Snell’s law, and ϕ0 � ϕ1. Solving
the azimuthal integral analytically leads to the axial field as

E�z� � −
ik2
4

Z
a

0

Cp

ffiffiffiffiffiffiffiffiffiffiffiffi
cos θ1
n1

s
eik2R

R

��
z − z1
R

� cos θ2

�

× �tp cos θ2 � t s� �
�
−
ρ1
R
� sin θ2

�
tp sin θ2

�
ρ1dρ1;

(11)

where R � �ρ21 � �z − z1�2�1∕2, and θ1, θ2, Cp, tp, and t s are
functions of ρ1. The integral interval in Eq. (11) is related di-
rectly to θ1 not θ2, thus valid even when θ1 exceeds the critical
angle [43]. Axial field E2;z contributes less under the smaller
index-mismatch, owing to �−ρ1∕R � sin θ2� ≈ 0.

A similar approach using the Luneburg and m-theory inte-
grals was reported in [30,44] but recently corrected [42]. A
Debye–Wolf approach was studied in [22], where the diffrac-
tion integral is evaluated at the spherical exit pupil, and for
stratified media at high Fresnel numbers in [10,12,45]. We
numerically compared our Stratton–Chu axial intensity for
an oil/water interface with Luneburg and Debye–Wolf results
at 1.4 NA and z1 � −20 μm. As shown in Fig. 2(b), three nor-
malized intensity profiles are well overlapped. The Stratton–
Chu and Luneburg methods evaluated at the interface are more
direct in deriving the focal field and work well at this high NA,
but can fail if NA is small or z1 is close to the origin as pointed
out in [30,43].

Generally, a field incident to the back focal plane of the
objective lens is tailored upon applications in terms of polari-
zation, phase, and apodization. ~Ei needs to be defined accord-
ingly. Various possible polarization states were described in
Section 3. An engineered phase Φ�θ;ϕ� can be added to ~Ei
by exp�iΦ�, which includes a helical phase exp�imϕ0� for gen-
erating vortex beams where m is the orbital angular momentum
index. It is also straightforward to consider phase rings or
annular apertures, associated with proper piecewise integrals
over polar angle θ1. A Gaussian beam (or apodization) of
exp�−r2∕w2

0� is also related to the polar angle by r �
n1f sin θ1 in aplanatic focusing above.

B. PSF in High NA Microscopic Imaging

We demonstrate vectorial diffraction calculation for two simple
microscopic imaging systems. First, we analyze a typical imag-
ing system comprising an objective and a tube lens in Fig. 3,
whose exit pupil is assumed to be right after the tube lens. In
fact, it may be located at other place with a different diameter,
yet boundary fields are still equally traced up to a constant
factor. The exit pupil field for an on-axis, in-focus dipole object
is traced as

(a) (b)

Fig. 2. (a) Schematic of aplanatic focusing through a dielectric inter-
face on a meridional plane (NA � n1 sin α1 � 1.4, λ0 � 488 nm
(vacuum), n1 � 1.522, n2 � 1.337, and f � 1.8 mm). Meridional/
sagittal fields are marked by red arrows and blue concentric circles,
respectively. (b) Comparison of axial intensity when z1 � −20 μm
for x-polarized, uniformly incident light.
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~E2 �R−1
z �ϕo�L2�−θ2�L1�−θ1�Rz�ϕo�~Eo �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 cos θ2cos−1θ1

p

×

2
6666666664

px�cos θ1 cos θ2cos2ϕo� sin2ϕo��py�cos θ1
×cos θ2 −1�cos ϕo sin ϕo −pz sin θ1 cos θ2 cos ϕo

px�cos θ1 cos θ2 −1�cos ϕo sin ϕo� py�cos θ1
×cos θ2sin2ϕo� cos2ϕo�− pz sin θ1 cos θ2 sin ϕo

px cos θ1 sin θ2 cos ϕo� py cos θ1 sin θ2 sin ϕo

−pz sin θ1 sin θ2

3
7777777775
;

k̂2 ∝R−1
z �ϕo�L2�−θ2�L1�−θ1�Rz�ϕo�k̂o; (12)

where the clockwise ray refraction at both lenses requires the
same minus signs in L, and θ1 ∈ �0; α1�, θ2 ∈ �0; α2� with apla-
natic apodization

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 cos θ2 cos

−1 θ1
p

. In [13,46], different
signs seem applied, but no detail is explained. For a typical
low NA tube lens, cos θ2 ≈ 1 and sin θ2 ≈ 0. A constant phase
exp�−ikf � induced by each lens was neglected in the tracing.
While in light focusing the meridional/sagittal planes for each
collimated field vector were set by the lateral location of the field,
here they are specified by the direction of each ray vector from
the point source, k̂o � �sin θ1 cos ϕo; sin θ1 sin ϕo; cos θ1�,
and thus Rz�ϕo� was applied. One can check that
Rys �θ1�Rz�ϕo�~Eo leads to Ezk � 0 as expected, and the colli-

mated field ~Ec � R−1
z �ϕo�L1�−θ1�Rz�ϕo�~Eo agrees with [5]

where derived otherwise. Also, the ray vector traced as k̂2 �
�− sin θ2 cos ϕo; − sin θ2 sin ϕo; cos θ2� exhibits geometrically
correct signs (i.e., k̂2 � �−; −;�� for k̂o � ��;�;��),
plus k̂2 · ~E2 � 0. If θ1 � θ2, ~E2 � �Eox ; Eoy; −Eoz �, which is
geometrically true.

Plugging the traced field, Eq. (12), to the Debye–Wolf
integral, Eq. (3), which is valid in most microscopic imaging
situations, the image field at a cylindrical observation point
�ρ;φ; z� with Eq. (4) is drawn as

~E�π

2
64
U �1�

0 �U �1�
2 cos�2φ� U �1�

2 sin�2φ� 2iU �1�
1 cosφ

U �1�
2 sin�2φ� U �1�

0 −U �1�
2 cos�2φ� 2iU �1�

1 sinφ

−2iU �2�
1 cosφ −2iU �2�

1 sinφ −2U �2�
0

3
75~p;

(13)

where

U �q�
p � −

ik2
2π

Z
α2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 cos θ2
cos θ1

s
F �q�
p Jp�k2ρ sin θ2�

× exp�ik2z cos θ2� sin θ2dθ2 (14)

with

F �1�
0 � 1� cos θ1 cos θ2; F �2�

0 � sin θ1 sin θ2;

F �1�
1 � sin θ1 cos θ2; F �2�

1 � cos θ1 sin θ2;

F �1�
2 � 1 − cos θ1 cos θ2: (15)

Here, the original Debye–Wolf integral coordinate �θ;ϕ�
was transformed to �θ2;ϕo�, whose angles appeared during
tracing, by θ � π − θ2 and ϕ � ϕo (i.e.,

R
π
π−α2

dθ
R
2π
0 dϕ �R α2

0 dθ2
R
2π
0 dϕo). The image half-cone angle α2 is linked with

the object half-cone angle α1 by lateral magnification M �
f 2∕f 1 � n1 sin α1∕ sin α2.

Note that smaller image space NA (α2 ≈ 0) induces insig-
nificant depolarization through the tube lens, leading to neg-
ligible axial fields due to U �2�

0 ≈ 0; U �2�
1 ≈ 0. Also negligible is

the tube lens apodization
ffiffiffiffiffiffiffiffiffiffiffiffi
cos θ2

p
≈ 1. For such a paraxial tube

lens, the field at the back focal plane of the objective, approxi-
mated as ~Ec , can be directly Fourier-transformed to derive PSF
for simplicity [7]. For an isotropic point object (or equivalently
a freely rotating dipole molecule), integrating the above
intensity j~E j2 over all the orientations (4π sr.) of ~p [7] yields
intensity PSF proportional to jU �1�

0 j2 � 2jU �1�
1 j2 � jU �1�

2 j2�
2jU �2�

0 j2 � 2jU �2�
1 j2. Other practical situations on the orienta-

tion of ~p are discussed in brightfield [5], fluorescence [7,47],
and multiphoton fluorescence [47] microscopy.

Next, a microscopic imaging system may consist of other
interesting optical elements such as a linear polarizer [7,46]
and a special phase/polarization element [48]. Here, we exem-
plify an imaging system with a detector polarizer (or analyzer)
in Fig. 4. We first show how to use the Jones matrices to obtain
the field vector and the wavevector at the exit pupil assumed
right after the L4 lens. The collimated field right before the
polarizer for a dipole object that emits ~Eo along k̂o is

~Ec � R−1
z �π � ϕo�L3�−θ2�Rz�π � ϕo�

× R−1
z �ϕo�L2�−θ2�L1�−θ1�Rz�ϕo�~Eo; (16)

or more simply ~Ec � R−1
z �ϕo�L3�θ2�L2�−θ2�L1�−θ1�

Rz�ϕo�~Eo. Note the opposite θ2 sign of L3 between the two
possible ways, depending on how meridional/sagittal planes
right before the L3 lens are set by Rz. This collimated field
is linked to the prior collimated field before the L2 lens by

Fig. 3. Schematic of microscopic imaging of an electric dipole ~p
emitting an object field of ~Eo � �k̂o × ~p� × k̂o. All the lenses are as-
sumed aplanatic. Red arrows and blue concentric circles indicate
meridional and sagittal fields, respectively.

Fig. 4. Schematic of microscopic imaging of an electric dipole
object through a linear polarizer.
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an identity matrix I�R−1
z �π�ϕo�L3�−θ2�Rz�π�ϕo�R−1

z �ϕo�
L2�−θ2�Rz�ϕo�, hence pointing to the same field and propa-
gation directions, although its field location differs azimuthally
by π. Continuing ray tracing up to the exit pupil is done as

~E4 � R−1
z �π � ϕo�L4�−θ4�Rz�π � ϕo�P�ψ�~Ec : (17)

The same sequence of the matrices gives the ray vector at the
exit pupil as k̂4 � �sin θ4 cos ϕo; sin θ4 sin ϕo; cos θ4�, as
geometrically expected. Beware of matching the basis of ~Ec
to �x; y; z� to apply the polarizer P�ψ�.

With the above traced field, the Debye–Wolf integral in
Eq. (3) can be evaluated. Again, transforming integral coordi-
nate �θ;ϕ� to �θ4;ϕo� by θ � π − θ4 and ϕ � π � ϕo, the
electric field near the focal region for the vertical analyzer
(ψ � π

2) is formulated as

~E � π

4

2
6664

px�U �1�
0 −U �1�

4 cos�4φ��� py�U �1�
2 sin�2φ� −U �1�

4 sin�4φ��� pz�iU �1�
1 cos φ� iU �1�

3 cos�3φ��
px�U �2�

2 sin�2φ� −U �1�
4 sin�4φ��� py�U �2�

0 −U �3�
2 cos�2φ��U �1�

4 cos�4φ��� pz�−iU �2�
1 sin φ� iU �1�

3 sin�3φ��
px�iU �3�

1 cos φ� iU �2�
3 cos�3φ��� py�−iU �4�

1 sin φ� iU �2�
3 sin�3φ��� pz�U �3�

0 �U �4�
2 cos�2φ��

3
7775; (18)

where

U �q�
p � −

ik4
2π

Z
α4

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 cos θ4
cos θ1

s
F �q�
p Jp�k4ρ sin θ4�

× exp�ik4z cos θ4� sin θ4dθ4 (19)

with

F �1�
0 � F �1�

4 � �1 − cos θ1��1 − cos θ4�;
F �2�
0 � 3� cos θ1 � cos θ4 � 3 cos θ1 cos θ4;

F �3�
0 � F �4�

2 � 4 sin θ1 sin θ4;

F �1�
1 � F �1�

3 � 2 sin θ1�1 − cos θ4�;
F �2�
1 � 2 sin θ1�1� 3 cos θ4�;

F �3�
1 � F �2�

3 � 2�1 − cos θ1� sin θ4;

F �4�
1 � 2�1� 3 cos θ1� sin θ4;

F �1�
2 � 2�1� cos θ1��1 − cos θ4�;

F �2�
2 � 2�1 − cos θ1��1� cos θ4�;

F �3�
2 � 4�1 − cos θ1 cos θ4�: (20)

Here, k4�� n4λ0� denotes a wavenumber in image space
(n4 � 1 if in air). This derivation is valid for both low and high
NA regime of the L4 lens. In many microscopy applications
where practically α4 ≈ 0, the field is dominated when
ψ � π

2 by Ey ∝ pxU
�2�
2 sin�2φ� � py�U �2�

0 − U �3�
2 cos�2φ�� −

ipzU
�2�
1 sin φ where U �2�

2 ≈ U �3�
2 . Thus, intensity PSF for

an isotropic point object can be approximately

I�jU �2�
0 j2�jU �2�

1 j2 sin2φ−2RfU �2�
0 U �3��

2 gcos�2φ�
�jU �3�

2 j2; (21)

where R takes the real part. Here, the first term is a primary
that resulted from py (oriented to the polarizer axis). The sec-
ond term originated from pz is the next dominant and makes
the overall intensity profile vertically elongated. This aniso-
tropic PSF, stretched to the polarizer axis ψ , stems from the
polarizer-induced rotational asymmetry of the field distribution
at the exit pupil. For a paraxial L4 lens, a simplified derivation is
found at [7].

We measured PSFs using fluorescent beads (F8789,
Invitrogen) to compare with theoretical PSFs derived here.
A diluted bead solution was dried on a plasma-etched coverslip

and mounted on a microscope slide with an antifade medium
(H-1000, Vector Laboratories). The bead sample was excited
by a 641-nm laser and imaged by a 1.4-NA objective (oil
immersion, UPLSAPO 100×, Olympus). Tube lenses used in
Figs. 3 and 4 are f 2 � f 3 � 200 mm and f 4 � 250 mm. In
calculating the theoretical PSF, the fluorescence signal was as-
sumed quasi-monochromatic at 683 nm based on the spectral
responses of the bead, emission filters, and the camera
(3.75 μm/pixel). The 46 nm diameter bead was assumed small
enough to approximate as an electric dipole in free rotation.
The calculated PSF in the image space was scaled down to
the object space (n1 � 1.512) by magnification M . The mea-
sured PSF in Fig. 5 agreed well with the derived PSF even
under the two assumptions. The full-width at half-maximum
(FWHM) averaged from 16 beads differed less than 5% from
the theoretical prediction. The conventional circular paraxial
PSF, 2J1�kNAx�∕�kNAx�, is inaccurate.

(a) (b)

Fig. 5. Theoretical versus experimental PSF in (a) microscopic im-
aging (theoretical FWHM: 275.4 nm) and (b) imaging with a vertical
polarizer [theoretical FWHM: 234.9 nm (x), and 329.3 nm (y)]. Two
insets are images of an identical fluorescent bead at 1.4 NA. The aniso-
tropic PSF caused by the polarizer is smaller (larger) along x (y) than
the isotropic PSF in (a). The paraxial PSF, 2J1�r�∕r, is for comparison.
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C. Complex System: Microscopic Imaging
with a Reflector

As an example of complex systems, we derive the PSF of an
imaging system with a mirror placed in an intermediate image
plane in Fig. 6. This can happen in remote focusing [49] and
confocal reflection imaging. We analyze the effect of the con-
focal mirror on imaging PSF. For further complexity, a polar-
izing beam splitter (PBS) and a quarter-wave plate (QWP) is
considered instead of a unpolarized beam splitter alone. We
simplify the PBS as a horizontal polarizer in forward propaga-
tion and neglect a constant effect of Fresnel transmission across
the field at interfaces. Similarly, in backward propagation, the
PBS is treated as a vertical polarizer and the uniform reflection
of the TE field at the hypotenuse surface (oblique interface) is
ignored. The QWP’s fast axis is azimuthally oriented by 45°
from the x-axis.

Starting from the collimated field ~Ec before the PBS, found
as Eq. (16) in the previous example, the collimated field ~Ec2
right before L5 can be traced as

~Ec2 � P�90°�W�90°; 45°�R−1
z �ϕo�L4�θ4�

× R−1
ys �π − θ4�FRRys �θ4�Rz�ϕo�

× R−1
z �π � ϕo�L4�−θ4�Rz�π � ϕo�W�90°; 45°�P�0°�~Ec

�

2
64

0 0 0

−
i�rp−rs�

2 0 0

0 0 −1

3
75~Ec; (22)

where the Fresnel reflection coefficients for a metallic mirror
(complex refractive index: nM ) [40] are given as

rp �
n2M cos θ4 − n4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2M − n24 sin

2 θ4
p

n2M cos θ4 � n4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2M − n24 sin

2 θ4
p ;

rs �
n4 cos θ4 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2M − n24 sin

2 θ4
p

n4 cos θ4 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2M − n24 sin

2 θ4
p : (23)

Here, only the x-component of ~Ec is converted to the
y-polarized field ~Ec2 (while its field distribution is not rotated
by 90°) with a factor of −i�rp − rs�∕2. This factor becomes −i
for a perfect mirror (rp � 1; rs � −1). Also, k̂c2 � −k̂c �

�0; 0; −1� implied by Eq. (22) shows the correct direction of
backward propagation. One can check that the x-component
of the backward field right after the QWP has a prefactor of
−�rp � rs�∕2, thus not being completely zero unless with a
perfect mirror. Note that the �xm; ys; z� basis is rotated to
�xp; ys; zk� by Rys �θ4� and returned back by R−1

ys �π − θ4�
right before and after the Fresnel reflection at the mirror, respec-
tively. The exit pupil field is finally obtained by ~E5 �
R−1

z �ϕo�L5�θ5�Rz�ϕo�~Ec2 with the geometrically consistent
wavevector k̂5 � �− sin θ5 cos ϕo; − sin θ5 sin ϕo; − cos θ5�
from the same Jones matrix sequence, guaranteeing that
k̂5 · ~E5 � 0. Note that this demonstration proves the consistent
tracing in our method even for the combined geometry of trans-
mission and reflection, as opposed to the method in [14].

If the pupil of the objective L4 is larger than the scaled pupil
of L1 by f 3∕f 2 [that is, f 4NA4 > f 1NA1 · f 3∕f 2 (free from
vignetting [50])], the PSF is governed by NA1. Then the
Debye–Wolf integral evaluated at the circular exit pupil, with
θ � θ5 and ϕ � ϕo, results in an analytical PSF as

~E � π

4

2
6664

px�U �3�
2 sin�2φ��U �1�

4 sin�4φ��� py�U �1�
0 −U �1�

4 cos�4φ��� pz�−iU �1�
1 sin φ� iU �1�

3 sin�3φ��
px�U �2�

0 �U �1�
2 cos�2φ� −U �1�

4 cos�4φ��� py�U �2�
2 sin�2φ� −U �1�

4 sin�4φ��� pz�iU �2�
1 cos φ − iU �1�

3 cos�3φ��
px�iU �4�

1 sin φ� iU �2�
3 sin�3φ��� py�−iU �3�

1 cos φ − iU �2�
3 cos�3φ��� pz�−U �4�

2 sin�2φ��

3
7775; (24)

where

U �q�
p � −

ik5
2π

Z
α5

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 cos θ5
cos θ1

s
i�rs − rp�

2
F �q�
p Jp�k5ρ sin θ5�

× exp�−ik5z cos θ5� sin θ5dθ5 (25)

with

Fig. 6. Microscopic imaging with a reflector placed at an intermedi-
ate focus. In ray tracing, reflection at the PBS’s hypotenuse to image
space was neglected and instead a backward propagation model in the
green box was considered.
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F �1�
0 � F �1�

4 � �1 − cos θ1��1 − cos θ5�;
F �2�
0 � 1� 3 cos θ1 � 3 cos θ5 � cos θ1 cos θ5;

F �1�
1 � F �1�

3 � 2 sin θ1�1 − cos θ5�;
F �2�
1 � 2 sin θ1�3� cos θ5�;

F �3�
1 � F �2�

3 � 2�1 − cos θ1� sin θ5;

F �4�
1 � 2�3� cos θ1� sin θ5;

F �1�
2 � 4�cos θ5 − cos θ1�;

F �2�
2 � 2�1 − cos θ1��1� cos θ5�;

F �3�
2 � 2�1� cos θ1��1 − cos θ5�;

F �4�
2 � 4 sin θ1 sin θ5; (26)

where θ1 � sin−1�M∕n1 · sin θ5� with a total magnification of
M and θ4 � sin−1�f 5∕f 4∕n4 · sin θ5�.

A typical small image NA (α5 ≈ 0) yields an y-dominant field
Ey∝px �U �2�

0 �U �1�
2 cos�2φ���pyU

�2�
2 sin�2φ�� ipzU

�2�
1 cosφ.

Thus, the intensity PSF for an isotropic point object is approx-
imately, with U �1�

2 ≈ U �2�
2 ,

I � jU �2�
0 j2 � jU �2�

1 j2 cos2 φ

� 2RfU �2�
0 U �1��

2 g cos�2φ� � jU �1�
2 j2; (27)

which is similar to Eq. (21) but this time is a horizontally elon-
gated PSF. This anisotropy is attributed to a rotationally asym-
metric field distribution formed by the PBS effectively as the
horizontal polarizer P�0°� in the forward propagation. In the
case of a perfect reflector, this field distribution ~Ec is main-
tained to ~Ec2 [by Eq. (22) up to a constant phase of −i ]

and thus Eqs. (18) and (21) are still the valid PSF after their
azimuthal adjustment by φ ↦ φ − �π2 − ψ� where ψ � 0°. A
non-perfect (or real) mirror, however, adds apodization and
wavefront errors by −i�rp − rs�∕2 in Eq. (25).

We numerically examined the mirror effect when θ4 � θ1
(satisfied if n4f 4 � n1f 1 · f 3∕f 2 ) and f 5 � 200 mm. In
Fig. 7(a), the silver mirror starts to attenuate its reflected field
noticeably for incident angles greater than 45° while negligibly
adding a wavefront error compared to the 1/4 wave (peak-to-
valley) criterion of diffraction limit. This modified apodization
increased the PSF’s FWHM at 1.4 NA (n1 � 1.525) by 2.9%
(x) and 0.6% (y) in Fig. 7(c). At 1.45 NA, the FWHM was
increased by 4.0% along the x axis. The mirror-induced
PSF broadening was smaller at longer wavelengths. Other
common metallic mirrors (aluminum and gold) similarly modi-
fied apodization at the visible spectra, and thus will influence
PSF to the same minor extent. We also checked the PSF broad-
ening when the PBS/QWP was replaced by a unpolarized beam
splitter. This layout with a silver mirror at λ0 � 450 nm re-
sulted in a rotationally isotropic PSF with a FWHM increase
of 4.1% (5.3%) at 1.4 (1.45) NA compared to the scenario
when a perfect mirror is assumed. Overall, one may ignore the
effect of such reflectors on PSF in most imaging applications.

5. CONCLUSION

We presented a systematic method to calculate vectorial diffrac-
tion. We revisited vectorial diffraction integrals and provided a
complete tutorial of vectorial ray tracing using the generalized
Jones matrix formalism to trace electromagnetic fields through-
out optical systems. Unlike the previous vectorial ray tracing
approach, our method traces both field vector and ray vector
as the boundary condition of vectorial diffraction integrals,
which makes coordinate definitions and vectorial ray tracing
consistent with any type of system geometry.

In our demonstration, we showed how to calculate a PSF in
high NA focusing through index-mismatched media using the
Stratton–Chu integral, followed by a comparison of axial PSF
with the previous study using the Luneburg and Debye–Wolf
integrals. Then we derived PSFs in standard and polarized mi-
croscopic imaging and confirmed their accuracy by experimen-
tal PSFs of fluorescent beads. We also formulated the PSF of a
microscopic imaging system with a planar reflector placed at a
conjugate focus, whose complicated depolarizations are hard to
trace without the matrix method. The metallic reflector attenu-
ates the field strength of high NA portion and thus slightly
enlarges PSF.

The generalized calculation procedure of vectorial diffrac-
tion demonstrated here can be applied to optical systems of
any complexity. The method is compatible with a source field
of any polarization and amplitude/phase distribution and with
any aperture geometry of systems such as annular apertures.
The subject system across diverse research areas could consist
of not only classical lens or polarization components, but
also modern optical elements such as micro-axicons and
metasurface-enabled flat optics.

Funding. Gordon and Betty Moore Foundation; Samsung.

(a) (b)

(c)

Fig. 7. Theoretical PSF with a metallic reflector at intermediate
focus. (a) Amplitude and phase of �rs − rp�∕2 in a silver mirror
(nM � 0.0409� 2.676i, oil n4 � 1.525, λ0 � 450 nm) included
in the PSF model. (b) Each intensity term of PSF in Eq. (27) at
1.4 NA. The top two distributions mainly influence the anisotropic
PSF shown in the inset in (c). (c) PSF cross-sections for perfect and
silver mirrors. Scale bars are 200 nm.
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