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Abstract—We show an interplay between Fano resonances and
a judicious absorption mechanism leads to a unidirectional perfect
absorber, which can be controlled in both direction and frequency.
Critical coupling phenomenon created by interference, separates
the left- and right-side of the system. At the same time, Fano res-
onance causes a divergence in the delay time of photons traveling
through the loss part of the system, which results in full absorption
of the photons from one side. Moreover, we depict that coincidence
of the two unidirectional perfect absorber modes from opposite di-
rections results in a perfect absorber mode, which is distinct from
the CPA modes. Furthermore, we show that the unidirectional per-
fect absorber mode is at the same time a spectral singularity and
an exceptional point, which makes this point ultrasensitive to any
changes in the system. Our results open a direction for designing
new type of absorbers, sensors, and switches.

Index Terms—critical coupling, exceptional point, metrology,
Parity time symmetry, perfect absorber, spectral singularity, uni-
directional perfect absorber.

I. INTRODUCTION

MONG non-Hermitian systems, parity-time (PT) sym-

metric systems have recently attracted tremendous
attention. This is due to their fascinating feature to generate
unidirectional transport such as unidirectional invisibility [1],
unidirectional reflectionless [2]-[5] unidirectional lasing [6],
[7], nonlinear assisted asymmetric transport [8]-[11], unidi-
rectional excitation [12], asymmetric solitons [13], to name a
few. While study of PT symmetric system started in quantum
mechanics [14], later the concept of PT symmetry brought to
optics [15]-[17], [43], electronics [18], [19] and acoustics [4],
[5]. In the realm of optics, a PT symmetric system is defined
by index of refraction n(x) that is symmetric in its real part and
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anti-symmetric in its imaginary part. Although this ensures that
there is a balanced amplification and absorption mechanism in
the system, it does not guarantee the realness of the spectrum
of the system. More specifically, depending on the degree
of non-Hermiticity, PT symmetric systems might encounter
a phase transition from exact phase with real spectrum to
broken phase with complex spectrum. Transition point, also
named exceptional point, is a topological singularity where the
Hamiltonian of the corresponding system becomes defective
and the eigenvalues and their associated eigenstates coalesce.
Therefore, there are amplifying or decaying modes in the
broken phase and despite the presence of the loss mechanism,
by accommodating the amplifying modes in a feedback system
one can attain a lasing threshold. Consequently, new lasing
schemes such as coherent perfect absorber-laser [2], [20],
[21], lasing shutdown via asymmetric gain [22]-[25], single
mode lasing [26], [27], and loss induced lasing [28] has been
proposed. Recently, we have proposed new types of lasing
modes which are distinct from the conventional aforementioned
ones [7]. At these modes, only one of the reflection coefficients
tends to infinity while the rest of the elements of the scattering
matrix remain finite. We call these modes unidirectional lasing
modes.

Time reversed counter part of lasers are known as coher-
ent perfect absorbers (CPA) [29] and support purely ingoing
fields. More specifically, in a CPA one can achieve complete
absorption at a single frequency by illuminating two counter
propagating fields to a Fabry—Perot cavity that possess a lossy
slab. CPA has a vast application in interferometric procedures in
the optical circuits and the technologies related to light harvest-
ing. In last few years the CPA concept has been investigated in
many areas spanning from optics to acoustics [29]-[35]. While
CPA needs coherent illumination of two beams; in many practi-
cal applications it is desirable to have perfect absorption under
single beam illumination. In previous absorption study, it has
been shown that we can obtain perfect absorption using critical
coupling phenomenon [36], [37] under single coherent source
illumination.

In this paper, we show that there is a time-reversed counterpart
for a unidirectional laser, which we call it unidirectional perfect
absorber (UPA). In a UPA at a specific frequency, reflection, and
transmission to one side tend to zero [38]. Thus, we can conclude
that in a reciprocal UPA only one element of the scattering
matrix, or in other words one reflection, is not zero. This implies
that a UPA mode is at the same time a spectral singularity and an
exceptional point. To obtain a UPA mode we couple a discrete
element to a PT symmetric continuum. This generates a Fano
resonance, which leads to photon trapping in the loss element.
As aresult, there exists reflection only from the passive site (with
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Fig. 1. Main panel: Schematic of the PT symmetric Fano coupled disk res-

onators defined in Eq. (5). The PT dimer composed of a passive (purple) disk
with no gain or loss and a lossy (green) disk. This dimer is coupled to the passive
micro-disk with resonance frequency w( . This triangle is embedded in a chain
of passive disk resonators. (a) At the critical value of the loss v* given in Eq.
(13), transmission and reflection from loss side tends to zero resulting in UPA
mode while (b) there is a perfect reflection from the opposite side.

no net gain or loss) while transmission and reflection from the
opposite side become zero. Using similar structure, but with
no loss, we show that the zero transmission is a result of the
critical coupling phenomenon. An abrupt phase shift occurs at
the zero transmission wavevector. Furthermore, we construct a
perfect absorber mode by combining two UPA singularities. In a
perfect absorber, the structure fully absorbs the incoming fields.
Our proposal provides freedom to have a controllable perfect
absorber for the left and/or right illumination with independent
frequencies.

In order to demonstrate the UPA modes, let us consider a one-
dimensional (1-D) chain of evanescently coupled microcavities
with resonance frequencies w.. Without loss of generality, we
set all the couplings in the chain to one. In the middle of the
chain, we embed a PT symmetric defect, which is coupled to
the chain with a coupling strength & to the chain. The PT de-
fect is composed of two coupled microcavities with resonance
frequencies w.. One of them possess loss. The other one is a
passive microcavity with no net gain or loss. It has been shown
that by a transformation this passive-loss dimer can be mapped
to a PT symmetric dimer [39]. The inter dimer coupling strength
between the passive and loss microcavities is denoted as «.. The
cavity chain including the PT dimer corresponds to a continuum
with a spectrum given by

w=w.—2cos(q), —-m<qg<T (1)

where ¢ is the wavevector.

Fano resonances are generated in multi-path scattering events
due to an interaction between a discrete state coupled to the con-
tinuum. Therefore, we couple a passive cavity with resonance
frequency w) = wp + w, to the PT dimer. Coupling strength
between each microcavities in the PT dimer and discrete state
is given by c. This construction gives different choices to the
photons to propagate through the scattering region. For instance,
an obvious choice for the photons is a direct path through the
PT dimer while another option is an indirect path through the
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passive cavity. An interference between the photons taking dif-
ferent paths leads to a delay in time flight of the photons and a
mechanism to trap them. A delicate design of the interference
process results in a tremendous delay for traveling photons and
consequently causes annihilation of photons residing in the loss
part of the dimer.

Transfer matrix M relates amplitude of the forward F7, r and
backward By, i propagating waves on the left (L) and right (R)
side of the scattering region

Fp\ I,
()= (5) g

). ®

Equivalently, we can describe the same scattering problem
using the scattering matrix .S. Scattering matrix relates the in-
going and outgoing fields. Elements of the scattering matrix are
the transmission and reflection amplitudes.

In a reciprocal system, elements of the transfer matrix are
related to the elements of the scattering matrix through the
following relations:

where

1 My S Mo
- 2L = 2
MQQ M22 M22

r, =

We can use the aforementioned scattering formalism to de-
scribe the dynamics of our PT Fano setup. More specifically, let
us assume an elastic scattering process, namely ¢,, = 1, e’
for the total field amplitude at disk n. In this case the sta-
tionary modal amplitudes of the system has the asymptotic
behavior v, = Fpeld("t1) 4+ Byeialn+1l) for n < —1, and
Yp = FReiqm’l) + Bge’iq(”’1> for n > 1, respectively.

Moreover, the dynamics of the total field amplitudes ¢ for
each cavity can be expressed using the coupled mode theory'
[40], [41] with the following equations:

t

“

tr, =tg

“Z’l = —¢y — Kby + WP

idjtfl = —¢y — K+ wed1

ifil?l = —¢uo1 — Gus1 Fwedn;  (In] > 2)

i‘i‘fo = —c(dp + 1) + (wo +we) o

% = —Kp_1 — Ky — cho — iyDl + wey

"Ccll‘fp = —Kkp1 — Ko — Py + wedp. )

Above, we denoted the field amplitude, composed of clock-
wise and counterclockwise modes, at the microcavities in the
PT dimer by ¢; , where [, p stand for the loss and passive disks,

One can write the same set of equations for the subtraction of the clockwise
and counterclockwise modes where all the couplings change their sign and the
dispersion relation becomes .We carried on the same analysis and obtain the
same results.
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respectively. Total field amplitude at the disk n and passive
discrete cavity are given by ¢,,, ¢, respectively. The coupling
terms r, k.and c are normalized with respect to the coupling
strength in the chain.

A reciprocal unidirectional laser cavity emits field only to one
side without any injection [7]. In a 1-D system, this is equivalent
to

Fp=Br=Fr=0, Bp#0
or (6)
F,=Bp=B, =0, Fp+#0

where the first one is associated with a left lasing condition and
second one is a right lasing condition. According to Eqgs. (4) and
(6), we should have My, 12y (¢*) — oo and Mys (¢*) # 0. In
this case, the left (right) reflection coefficient diverges to infinity
for a real wavevector ¢* € . Notice that Mo (¢*) # 0 makes
sure that the transmission remains finite.

In a UPA we are looking for the time reversed counterpart of
the unidirectional laser with boundary conditions

By =Fr=0, Fp#0
or @)
Fr=Bp =0, Br#0
which can be obtain if we have
Msy — 00, Myy(12) — 0, Mig(21) # 0. 3)

The elements of the transfer matrix )M associated with the
system described by Eq. (5) can be expressed as

Msy = 22I‘/<;2Ysmq Ms119) = m 9)
where
L= ke—c(2cos(q) —wp) !
Y= e — (a+g)(a+8)
Xpmy = I? = (0" + &) (@ + &) (10)

with §, = —2cosq + m, & =¢, +iy,and a = ke,
In order to satisfy the UPA conditions given by Eq. (8) from
Eq. (10) we have

To satisfy the first condition in Eq. (11), obviously, we need
to have % = —c? /(2 cos ¢* + wy). In addition, this relation to-

gether with the condition X; — 0 (assuming left UPA), lead to
the critical value of loss, namely

*

v = K sing". (12)

The critical value of loss simplifies the critical coupling &
Krp = (nQ - 2) cosq”. (13)

Moreover, the critical coupling «} yields the critical reso-
nance frequency of the passive discrete state
Wi = we — 2cos —c* /KL (14)

One can show that in the first order approximation in dq =
q — ¢ and 6y = v —~* and for the above critical values we
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Fig. 2. (a) Transmission, (b) reflection from the left side, and (c) reflection

coefficient from the right side for k = 1.45, ¢ = 0.1, and y* ~ 0.21 versus
wavevector ¢g. Right panel shows the corresponding phases of (d) the trans-
mission, (e) the left reflection, and (f) the right reflection amplitudes versus the
wavevector . The abrupt phase change in (d), (e) at the UPA, ¢ = 0.1, results in
the resonance trapping and large delay time for the photons being reflected from
the structure. This resonance trapping annihilates the reflection of the system
from the left (loss side).

have
Y
Xr
Xz

1%

2kt e 29" gin? ¢*
—2k1 sin? ¢*
0. (15)
(15), (9) and Eq. (4) that
2iT'k* sin ¢*
i sing” _

1%

1

It is clear from the Egs.

t =
Y
X
r, = 7L:0
-X .
rgp = YR = et (16)

Fig. 2(a)—(c) depicts transmission and reflections of our setup
versus wavevector. We observe that at ¢ = 0.1 transmission and
reflection from the loss side are zero while the reflection from
the right side is perfect. Thus, one can conclude that at the UPA
wavevector the setup is a perfect mirror from one side and a
perfect absorber from the opposite side.

The perfect reflective behavior of the system is due to the
critical coupling phenomenon, I' — 0. For such an arrangement,
because of interferences, left and right side of the system become
decouple from each other. Notice that for v = 0, due to the
symmetry Xr = X . In this case, Y, X7 r functions to the first
order approximation in dq are given by

Y & gle 4 gin? ¢

X, = Xp = —k'sin® ¢". (17)

Therefore, for the passive system with no loss we expect
to have perfect reflection from both sides of the system. In
Fig. 3, we have plotted a schematic (main panel) and the generic
response (3(a), (b)) of the passive structure.

Considering the above discussions, we expect to have perfect
absorber for a dimer consisting of two lossy microresonators
(double loss dimer depicted in the main panel of Fig. 4). Con-
struction of the perfect absorber is due to the coexistence of
the two independent spectral singularities associated with two

separate UPA modes. In this case, light gets absorbed from both
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Fig. 3. Schematic of the passive Fano coupled disk resonators in Eq.(5) with

v = 0. (a) At the critical couplings and resonances, left and right of the system
decouple from each other (critical coupling) and transmission tends to zero
resulting (b) a perfect reflection from the both sides at ¢ = 0.1. (c), (d) Phase of
the transmission and reflection amplitudes. The abrupt 7 phase shiftat g = 0.1
in the transmission amplitude is responsible for critical coupling phenomenon.
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Fig. 4. Schematic of the double loss Fano coupled disk resonators with co-
incidence of two UPA modes from left and right generating a perfect absorber.
(a) Transmission and (b) reflections from the both sides tends to zero at g = 0.1.
(c), (d) Phase of the transmission and reflection amplitudes. The abrupt 7 phase
shift is responsible for the perfect absorption.

left and right. This is distinct from the coherent perfect absorber,
where one needs to design the phase and amplitude of the incom-
ing fields in order to observe the complete absorption. However,
while in our setup there is no need to design the incoming fields,
one needs to set couplings and resonance frequency of the pas-
sive discrete state. Notice that by setting the coupling « on the
left and right side to different values, and consequently v, we
can have perfect absorption at two different frequencies for the
left and right. This gives the possibility to design the UPA for
different directions independently.

As we mentioned earlier, to have a perfect absorber one needs
to have a divergence in the delay time 7 of the photons in the
lossy microcavity. Delay time of the transmitted and reflected
photons is proportional to the derivative of the phase of the trans-
mission or reflection amplitude versus the wavevector, namely

dgt,r

i (18)

T
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We plotted the phase of the reflected and transmitted signals
for the PT symmetric case in the right panel of the Fig. 2. At
the UPA wavevector, ¢ = 0.1, the phase of the transmission and
left reflections, 6;, 0,., , undergoes an abrupt 7 phase shift. This
implies the existence of the divergence of their derivative with
respect to the wavevector resulting in the diverging delay time
of the reflected or transmitted photons. The huge delay time
increases the interaction of the photons with the loss element,
causes UPA behavior.

It is beneficial to consider the phases for the passive and
double loss structure. In the passive case, as depicted in Fig. 3(c)
and (d), only transmission phase ¢; undergoes an abrupt 7-phase
shift due to the critical coupling phenomenon while phases of
the reflections are smooth functions. In the double loss case, as
depicted in the Fig. 4(c) and (d), all the phases experience the
m-phase shift and due to the loss elements we have a perfect
absorber with zero transmission and reflection to both sides.

It is interesting that the UPA 1is a spectral singularity and
an exceptional point, simultaneously. At the exceptional point
eigenvalues of the corresponding scattering matrix

S = (’;L ' > (19)
given by
Sy =t+\/rorg 20)
become degenerate and the eigenvectors,
1
=1, [ @D
TR

coalesce. However, existence of exceptional point induced uni-
directional reflectionless mode (see for example Ref. [3]) does
not imply necessarily zero transmission. This is in contrast to
our UPA mode, which makes it a distinct feature of our proposal.

An interesting feature of the UPA as a spectral singularity is
the sensitivity of the mode to the changes in the environment,
which potentially can be used in metrology [42], and sensing. In
Fig. 5, we present the changes in the reflection from the loss side
of the PT system depicted in Fig. 1. We change (see Fig. 5(a))
the loss, A = v — v*, (see Fig. 5(b)) resonance frequency of the
discrete state A = w(, — w{, and (see Fig. 5(c)) the coupling
A = ¢ — ¢*.> We observe that a small change in any of the
critical parameters of the system in the scattering domain causes
a noticeable change in the intensity of the reflected field. The
sensitivity of the system is pronounced for the wavevectors near
to zero or 7. This is expected as, to the first order, in all the above
three cases the reflection from the loss side is proportional to
cse(q).

In conclusion, we discussed a unique way to generate a con-
trollable unidirectional perfect absorber mode; a time reversed
counterpart of a unidirectional laser. At the UPA mode, trans-
mission and one side reflection tend to zero. We showed that

2The parameter A has the same units in all the three cases. This makes the
changes in the reflection to be in the same magnitude.
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Fig. 5. Sensitivity of the amplitude of the reflection from the loss side at
the UPA mode. (a) Deviation in the loss parameter A = v — v*, (b) deviation
in the resonance of the discrete element A = w() — w{)*, and (c) deviation the
coupling between the PT dimer and the discrete element A = ¢ — ¢*. We used
q¢*=0.1, ¢c=0.1, Kk = 1.45.

the critical coupling phenomenon guarantees the zero transmis-
sion while the zero reflection is due to the divergence of the
time flight of the photon trapped in the loss element by the
Fano resonance. Furthermore, we discussed how to implement
a perfect absorber mode by combining two UPA modes. The
perfect absorber mode is distinct from the CPA mode as there
is no need to design the incoming field. Moreover, the left and
right UPA modes are independent of each other, which provides
the opportunity to have UPA modes at the left and right side of
the system independently. Finally, we discussed that the UPA
mode is simultaneously a spectral singularity and an exceptional
point of the system. This feature makes the mode ultra-sensitive
to the changes in the environment. This sensitivity might have
application in sensing and metrology. Of great interest will
be the extension the notion of UPA to two and three dimen-
sions and incorporating the UPA in such lattices.
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