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Recently, higher-order topologies have been experimentally realized, featuring topological corner modes
(TCMs) between adjacent topologically distinct domains. However, they have to comply with specific
spatial symmetries of underlying lattices, hence their TCMs only emerge in very limited geometries, which
significantly impedes generic applications. Here, we report a general scheme of inducing TCMs in arbitrary
geometry based on Dirac vortices from aperiodic Kekulé modulations. The TCMs can now be constructed
and experimentally observed in square and pentagonal domains incompatible with underlying triangular
lattices. Such bound modes at arbitrary corners do not require their boundaries to run along particular lattice
directions. Our scheme allows an arbitrary specification of numbers and positions of TCMs, which will be
important for future on-chip topological circuits. Moreover, the general scheme developed here can be
extended to other classical wave systems. Our findings reveal rich physics of aperiodic modulations, and
advance applications of TCMs in realistic scenarios.
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Higher-order topological insulators (HOTIs) and asso-
ciated topological corner modes (TCMs), originally pro-
posed in quantum condensed matters [1–5], have been
realized in various classical photonic [6–12] and phononic
crystals [13–21]. It enables designs of TCMs in conjunction
with previously found topological edge modes as cavities
and waveguides, respectively, and allows their integration
on the same device [22,23]. Generally, realizations of
TCMs rely on specific topological properties of two
meeting edges running along different crystal directions.
Such a scheme only works for configurations that can
preserve certain spatial symmetries of underlying lattices
[17,24,25], giving rise to only a few choices for angles of
corners, e.g., 90° for square lattices [7,9,10,13,17,21] and
60° for kagome lattices [14,15]. Interestingly, there are also
implementations using electronic circuit lattices [26–29]. In
these cases, they are not used to control waves in a
continuous medium, and the above discussed spatial
symmetries translates into mathematical descriptions in
terms of ports and network notations. Therefore, such strict
limits definitely hinder the exploration of rich physics of
HOTIs and their practical applications where complex
geometries are often encountered.
Here, we adopt a different route toward realizing TCMs

based on a band-folding mechanism through the enlarge-
ment of unit cells [30–32], and together with Dirac vortices
using aperiodic Kekulé modulations [33–35], we are able to
transcend geometric constraints on the corner and domain
shapes in previous schemes intrinsically imposed by their
own routes. Our scheme is experimentally realized using
elastic phononic crystals. The mode profiles and robustness

of these TCMs in arbitrary polygonal domains are further
confirmed by direct field mapping and their associated
spatial Fourier spectra. This general scheme is not
limited by specific materials and can be extended immedi-
ately to other classical wave systems, such as airborne
acoustics, and photonics at optical frequencies. It leads to
robust higher-order corner modes, which now can be
designed in complex and compact geometries that will
be useful for constructing topological integrated circuits
and devices.
The initial phononic crystal is an elastic plate with slots

arranged in a triangular lattice [Fig. 1(a)]. Each slot
comprises three slits of the same shape [Fig. 1(b)].
Guaranteed by the C3v symmetry, Dirac cones emerge
at corners K� of the first Brillouin zone (FBZ) when
calculating bands with the primitive unit cell [36–38]
[green shaded region in Fig. 1(a)]. Consequently, when
considering an enlarged unit cell [red shaded region in
Fig. 1(a)], the inequivalent Dirac cones at valleys K� will
be folded back [17,24,25], and a double Dirac cone
emerges at Γ point, center of FBZ [Fig. 1(c)]. In each
enlarged unit cell, there are three inequivalent slots
labeled as A, B1, and B2, respectively [Fig. 1(b)]. Once
the slot widths (dA, dB1, and dB2) are no longer identical,
the double Dirac cone will be gapped, which can induce
topological effects in the band gap [29–31]. Here, we
impose a Kekulé modulation, which is manifested by
alternating coupling strengths (an analog to single and
double bonds in Kekulé structure of benzene) between
neighboring sublattices [39–41], as the intervalley cou-
pling. Hence, the slot centered at r ¼ ðx; yÞ has width
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dðrÞ ¼ d0 þ δd cosðK · rþ φÞ, where d0 is the initial slot
width, K ¼ Kþ −K− is called the Kekulé vector [33,34],
and parameters δd and φ separately control strength and
phase of the modulation. Straightforwardly, the slot
widths are modulated to be dA ¼ d0 þ δd cosφ, dB1¼
d0þδdcosðφþ2π=3Þ, and dB2 ¼ d0 þ δd cosðφþ 4π=3Þ.
For demonstration, we calculate band structures when
φ ¼ 0 and π [Fig. 1(d)]. According to frequency orders of
the dipolelike (p) and quadruplelike (d) modes, φ ¼ 0
corresponds to an ordinary insulator (OI) while φ ¼ π
corresponds to a topological insulator (TI), which hosts
pseudospin-Hall edge states (see Supplemental Material,
Note S4 [42–47]). Generally, this band topology is well
described by the effective Hamiltonian (see Note S1 for
details [42])

HðkÞ ¼ vDτ0 ⊗ ðkxσ1 þ kyσ2Þ þ ðm1τ1 −m2τ2Þ ⊗ σ3;

ð1Þ

where k ¼ ðkx; kyÞ is the Bloch wave vector, σi and τi are
identical (i ¼ 0) and Pauli (i ¼ 1, 2, 3) matrices. The
parameter vD represents Fermi velocity, while m1 and m2

stands for intervalley couplings introduced by the modu-
lation, which can be grouped together as a Dirac mass
m ¼ m1 þ im2. To the first order, it can be estimated [33]
as m ∝ eiφδd. Explicitly, the modulation opens a full band
gap proportional to δd [Fig. 1(e)]. Implicitly, it introduces
an additional phase φ in eigenmodes without significant
impact on band gap [Fig. 1(f)]. Therefore, when becoming
position dependent, the winding of modulation phase φðrÞ
naturally introduces phase vortices for the Dirac mass
mðrÞ, referred to as Dirac vortices [48].
We now seek to realize TCMs for all corners of a square

domain of the underlying triangular lattice, which disre-
gards its specific spatial symmetries (C3 rotational sym-
metries here), the essential ingredient for TCMs in many
previous HOTIs [5,14,15]. On a metastructure (the whole
profile) of the initial phononic crystal, we apply an
aperiodic Kekulé modulation [Fig. 2(a)]

dðrÞ ¼ d0 þ δd cos½K · rþ φðrÞ�: ð2Þ
The inhomogeneous phase φðrÞ divides the modulated

metastructure into two distinct domains. Though both
domains are insulating phases, in the outer domain, we
instruct φðrÞ ¼ 0, hence it is simply an OI and only serves
as cladding. On the contrary, in the inner domain, the phase
field φðrÞ needs to be aperiodic, thereby introducing a
phase evolution on intervalley couplings. Here, we instruct
a smooth profile φðrÞ in the inner domain, chosen as a
function which satisfies Laplace’s equation (see
Supplemental Material, Note S5 for other possible smooth
phase profiles [42])

ΔφðrÞ ¼ 0; ð3Þ

with the boundary condition

φðrÞjr∈Ej
¼ 2mjπðmj ∈ ZÞ; ð4Þ

at edge Ej (j ¼ 1 to 4) of the square, where Δ is the two-
dimensional Laplace operator, and mj is an integer. The
boundary conditions ensure continuous transitions between
the inner domain and outer OIs [φðrÞ ¼ 0], and φðrÞ is
uniquely determined (see Supplemental Material, Note S7
[42]). The inner domain undergoing aperiodic Kekulé
modulation is termed as a Kekulé modulated insulator
(KMI). Because of a smooth profile in the inner domain, the
KMI can only possess phase vortices around its corners.
These phase vortices, characterized by winding numbers of
phase φðrÞ around the corners, then guarantee emergence

FIG. 1. Initial phononic crystal and homogeneous Kekulé
modulation. (a) Schematic of initial phononic crystal, which is
a thin elastic plate with a triangular lattice of depicted identi-
cal slots. Green (red) shaded region denotes a primitive (enlarged)
unit cell. (b) Schematic of enlarged unit cell. Initially, slot length
l0 ¼ 7.0 mm, and uniform slot widths dA ¼ dB1 ¼ dB2 ¼
d0 ¼ 3.0 mm. Other geometric parameters a0 ¼ 12.0 mm,
h ¼ 2.0 mm. (c) Band structure of flexural (A0) modes calculated
using enlarged unit cell, with unperturbed uniform slot width d0.
Inset: two inequivalent Dirac cones at Kþ and K− valleys folded
back into Γ point. (d) Band structures around Γ point when we
apply a homogeneous Kekulé modulation with φ ¼ 0 and π,
respectively. The modulation strength δd ¼ 1.4 mm. The fre-
quency order of dipolelike (p) and quadrupolelike (d) modes
suggests that φ ¼ 0 (φ ¼ π) corresponds to an ordinary insulator
(topological insulator), or OI (TI). Yellow shaded regions denote
the common band gap. (e),(f) Size of the band gap with respect to
modulation strength δd (e) and phase φ (f).
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of TCMs by Jackiw-Rossi mechanism [33,48]. For a corner
formed by edges Ei and Ej, the number of TCMs bound
there is then N ¼ jmj −mij, which are dictated by the
boundary conditions Eq. (4).
We hence consider alternating values of 0 and 2π as

boundary conditions of φðrÞ for the four edges [Fig. 2(a)].
The metastructure is then designed according to Eq. (2)
using discretized values of calculated φðrÞ, which clearly
demonstrates phase windings around the corners [Fig. 2(b)
and inset]. With measured material parameters (see

Supplemental Material, Note S15 for detailed values
[42]), 3D full-wave eigenmode simulations are performed
and four midgap flexural modes emerge in the spectra of
the metastructure [Fig. 2(c)]. The field profile of one of the
midgap modes [Fig. 2(d)] confirms that it is indeed
confined around the upper-left corner, and other midgap
modes are confined around other corners (see Supplemental
Material, Note S6 for all four TCM modes [42]). Its time-
harmonic animation also confirms its localized and non-
propagating feature (see Supplemental Material, Movie S1
[42]). We also examine the local response at upper-left
corner [Fig. 2(e)]. It clearly demonstrates a resonance peak
at 6.97 kHz around middle of the band gap, though not very
sharp (Q ≈ 26.8) due to elastic loss included in simulations
(see Supplemental Material, Note S15 [42]). We perform
spatial Fourier transforms (SFTs) on the numerically
excited field [36,37], and the Fourier spectra confirm that
only regions around K� valleys are occupied by the mode,
which is a key signature of its topological origin from
intervalley couplings. For comparison, we can see the
Fourier spectra of the reference structure shows no such
concentrated occupation in reciprocal space [Fig. 2(f)]. The
frequencies of the four midgap TCMs are also insensitive to
modulation strength [Fig. 2(g)]. The small frequency split
of four TCMs is mainly owing to the incompatibility
between rotational symmetries of the square KMI and
the underlying triangular lattice.
For experimental corroboration, we perform field map-

ping to directly observe the TCMs. A sample of the
designed metastructure [Fig. 2(b)] is 3D printed using
stereolithography techniques [Fig. 3(a)]. We use piezo-
electric speakers attached on the sample to excite flexural
waves, and out-of-plane displacement is pointwise scanned
by a scanning Doppler vibrometer [49] (see Supplemental
Material, Note S15 for details [42]). The imaged field at
6.90 kHz (see Note S8 for fields at other frequencies [42])
indeed demonstrates good confinement around the corner
[Fig. 3(b)]. To demonstrate strong field enhancement, a key
feature of resonance modes, we also measure response
spectra at the corner, edge, and bulk of the metastructure
sample. Subsequently, a peak at 6.90 kHz emerges in the
band gap when exciting at the corner, and it disappears
when exciting at the edge and bulk [Fig. 3(c)]. For a definite
confirmation, we perform SFTs on experimentally imaged
displacement field, and the Fourier spectra confirm
that the modes excited at the corner only occupy both
valleys [Fig. 3(d)], in excellent agreement with simulations
[Fig. 2(f)]. We then proceed to detect robustness of the
resonance peak. By measuring the response spectra of
similar samples but with different modulation strength δd,
it is found that a resonance peak, from the same TCM,
persists around the frequency 6.90 kHz in the enlarging
band gaps [Fig. 3(e)].
Next, we demonstrate the emergence of TCMs in more

general polygons with symmetries incompatible to the

FIG. 2. Topological corner modes (TCMs) induced by Dirac
vortices of aperiodic Kekulé modulation. (a) Schematic of
designed metastructure with TCMs at four corners, a square
domain (blue region) with aperiodic Kekulé modulation
[ΔφðrÞ ¼ 0] cladded by OIs [φðrÞ ¼ 0, gray region]. The
modulated domain is referred to as a Kekulé modulated insulator
(KMI). Yellow dots represent Dirac vortices of 2π-phase winding.
(b) Generated pattern of metastructure in (a). The red dashed
square (Lsqr ¼ 320 mm) delineate the OI and KMI. Inset: phase
φðrÞ of KMI. Black scale bar: 48 mm. (c) Calculated flexural
eigenmodes of metastructure. (d) Field profile [ReðwÞ] of one of
the midgap modes. Selected area (green square) around the corner
is enlarged, with black arrows denoting in-plane displacement
[ReðuÞ, ReðvÞ]. Black scale bar: 48 mm. (e) Response spectra
when exciting the metastructure and a reference structure.
Positions of source point (S) and detection point (D) are depicted
in (d). The orange arrow indicates the resonance at 6.97 kHz in
the band gap (yellow shaded region). The reference structure only
comprises OIs. Maximum of each spectrum is normalized to
unity. (f) Fourier spectra [jFTðwÞj] of experimentally imaged field
of metastructure (meta.) and reference structure (ref.) at 6.90 kHz.
Green dashed hexagon: FBZ of primitive unit cell shown in
Fig. 1(a). (g) Frequencies of the four TCMs versus modulation
strength (δd). Dashed lines indicate frequency range
of the band gap.
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underlying triangular lattice. Here, we design a metastruc-
ture, which comprises a pentagonal KMI cladded by OIs
[Fig. 4(a)]. For convenience, the metastructure is denoted
as pentagon I, and the corners of the pentagonal KMI are
denoted as A to E. The specified boundary conditions force
the phase field φðrÞ into winding around all corners except
corner A [Fig. 4(b) and inset]. The calculated eigenfre-
quency spectrum shows that there are indeed four midgap
corner modes for the metastructure [Fig. 4(c)], and their
fields are confined around each corner except corner A
where there is no phase winding (see Supplemental
Material, Note S9 for fields of all four modes [42]). The

local response spectra are measured, and it is seen that a
resonance peak emerges in the band gap for corner C, and
no such resonance exists for corner A [Fig. 4(d)] when we
excite around these corners. We have also experimentally
imaged displacement field around corner C [Fig. 4(e)], and
its Fourier spectra confirm its topological origin [Fig. 4(f)],
showing occupation of both valleys similar to that of a
square KMI [Fig. 3(d)]. Moreover, we note that it is also
possible to induce multiple TCMs at a single corner by
designing a higher phase winding around it (e.g., 4π to get
two corner modes, see Supplemental Material, Note S10
[42]). Finally, we remark that TCMs can likewise emerge in
heptagonal, octagonal, and irregular polygonal domains,
even with curved boundaries (see Note S11 [42]). As their
frequencies are only very slightly shifted for such a wide
variety of shapes, the TCMs can offer a flexible and robust
topological protection when designing topological circuits
(see Notes S12 and S13 [42]).
In summary, the scheme of realizing TCMs in arbitrary

polygonal domains opens a door for exploring topological
matter arising from aperiodic modulations. The TCMs
stemming from Dirac vortices instead of bulk-boundary
correspondences is directly observed and its robustness is
confirmed. The scheme no longer requires domains to
maintain specific geometry for compatibility with their

FIG. 3. Direct observations of TCMs and their robustness.
(a) Photograph of the 3D-printed metastructure sample with a
square domain of the KMI. Red dashed lines denote boundaries
between the domains of OI and KMI. Orange (cyan) point denotes
where we excite (detect) the out-of-plane displacement. (b) Ex-
perimentally imaged field of out-of-plane displacement (jwj) at
6.90 kHz. Green scale bar: 36 mm. (c) Detected response spectra
of the metastructure when exciting at the corner, edge, and bulk,
respectively. The orange arrow indicates the resonance at
6.90 kHz. When measuring each spectrum, the displacement
between the source and detection points is always
rD − rS ¼ ð−3a0=2;

ffiffiffi

3
p

a0=2Þ. Inset: colored dots indicate posi-
tions of detection points. (d) Fourier spectra (jFTðwÞj) of imaged
fields of the metastructure. Green dashed hexagon: FBZ of
primitive unit cell. (e) Detected response spectra at the upper-
left corner for metastructure samples with varying strength δd.
The resonance peak of the corner mode persists around 6.90 kHz
in the broadening band gap (yellow shaded region), as indicated
by orange arrows. The maximum of each spectrum is normalized
to unity.

FIG. 4. Experimental observation of TCMs induced by Dirac
vortices in pentagonal domains. (a) Schematic of a pentagonal
KMI (blue region) cladded by OIs (gray region). The corners are
labeled as A to E for convenience. Yellow dots represent Dirac
vortices of 2π-phase winding. (b) Pattern of the metastructure
(Lpen ¼ 200 mm), denoted as pentagon I (pen. I). Blue dashed
rectangle indicates the region imaged in experiments. Inset:
distribution of phase φðrÞ in the pentagonal domain. Black scale
bar: 48 mm. (c) Calculated eigenmode spectra of the metastruc-
ture. (d) Local response spectra at corner A and corner C. Source
and detection points around corner C are depicted in (e) as orange
and cyan dots, respectively. (e) Imaged field map (jwj) of the
denoted region in (b) when exciting corner C at 6.80 kHz. Green
scale bar: 36 mm. (f) Fourier spectra ðjFTðwÞj) of the exper-
imental field at 6.80 kHz. Green dashed hexagon: FBZ of
primitive unit cell.
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underlying lattices to induce TCMs, and the number of
TCMs for a corner is also customizable. As the emergence
of these TCMs does not depend on specific material
parameters, the scheme can be directly scaled for different
working frequencies up to GHz, which is important for
telecommunications and may lead to innovative integrated
devices [18,32]. It is also obvious that although the scheme
is proposed in the frame of a Hermitian theory, the induced
TCMs are robust against non-Hermitian loss of the
material. Thus, an interplay between the TCMs and non-
Hermitian gain and loss may further advance their wave
control applications [50–53], such as trapping, sensing, and
lasing. Furthermore, the general scheme is also applicable
for other classical systems (see Supplemental Material,
Note S14 [42]), such as on-chip photonics, and may
retrospectively inspire unprecedented topological matter
in quantum condensed matters.
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