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We demonstrate that it is possible to localize photons nonreciprocally in a moving photonic lattice made
by spatiotemporally modulating the atomic response, where the dispersion acquires a spectral Doppler shift
with respect to the probe direction. A static defect placed in such a moving lattice produces a spatial
localization of light in the band gap with a shifting frequency that depends on the direction of incident field
with respect to the moving lattice. This phenomenon has an impact not only in photonics but also in broader
areas such as condensed matter and acoustics, opening the doors for designing new devices such as
compact isolators, circulators, nonreciprocal traps, sensors, unidirectional tunable filters, and possibly even
a unidirectional laser.
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Artificial defects embedded in periodic structures are an
important foundation for creating localized modes and
producing localized resonant modes in the gap [1,2].
Thus, such defects are good candidates for designing
photonic crystal lasers [3–6], and they have a vast range
of applications such as strain field traps [7], strong photon
localization [8], mode selection [9], and lasers [3–5,10,11]
to name a few. While full domination of the wave propa-
gation requires controlling the directionality [12–14], up
until now, all of the proposed localized modes have been
reciprocal and restricted by time reversal symmetry.
Consequently, localization is bidirectional and photons

in the forbidden stop band are confined irrespective of the
direction of the incident beam. Furthermore, while in
photonic crystals, modulation occurs in the real part of
the refractive index. Recently, parity-time symmetric sys-
tems have been proposed where the imaginary part of the
index is periodically altered. Asymmetric reflections in 1D
parity-time symmetric structures have been proposed as a
method for creating unidirectional, yet reciprocal, trans-
ports such as unidirectional invisibility [15], unidirectional
lasing [16,17], and a unidirectional antilaser [18]. However,
in all of the aforementioned phenomena in the absence of
the magnetic effect, in Hermitian and non-Hermitian
systems, the band structure is symmetric and any nonre-
ciprocal light propagation is prohibited. Specifically, latti-
ces with time symmetry, or more precisely any symmetry,
that changes the wave vector k to −k, do not support
asymmetric band structure [19]. Consequently, the trans-
mitted field in such lattices is symmetric and independent
of the input channel. Nevertheless, in recent years there is a
demand for nonreciprocal transport, especially in minia-
turized and compact systems [20–23].
Magnetic biasing, for example in Faraday isolators, is the

most common technique to break the reciprocity [24,25]. In

a similar fashion, a periodic stack of anisotropic dielectrics
and gyrotropic magnetic layers results in asymmetric band
structures [13,19,20]. More recently, one-way frequency
conversion in waveguides has been proposed by means of a
spatiotemporally modulated index of refraction [12] that
results in magnetic-free nonreciprocal optical [21,22],
acoustic [26,27], and radio-frequency [28] transport where
a temporal potential imitates a magnetic field responsible
for nonreciprocity [29–31].
Here, we propose a nonreciprocal localized defect mode

at a specific frequency. Specifically, the nonreciprocal
trapping of light results in the unidirectional exponential
accumulation of photons traveling in only one direction. For
a finite system, such localized modes result in a nonzero
transmission in the band gap. In the opposite direction and at
the same frequency, photons end up in the band gap and thus
their propagation is forbidden. For a reasonably strong
modulation we show that one can obtain an interesting
situation,wherein one direction photons get trapped, namely
localized, while in the opposite direction and at the same
frequency, the photons are in the passband with a scattering
mode feature. Particularly, in a scattering mode, unlike the
localized mode, the field does not have exponential form.
Finally, we show the frequency shift of the defect mode is
linearly proportional to the detuning similar to the Zeeman
effect. The nonreciprocal defect mode can filter the
unwanted frequencies in the band gap and transmit the
defect mode signal. By changing the detuning, one can tune
the filtering frequency in a nonreciprocal manner.
To realize a nonreciprocal localized mode, as schemati-

cally depicted in Fig. 1, we embed a defect in a periodic
spatiotemporally modulated 1D lattice. Although our pro-
posal is general and can be implemented in different wave-
base systems, we consider a periodic photonic lattice
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generated in a three-level electromagnetically-induced-
transparency (EIT) medium. The three-level system we
consider (see the left inset of Fig. 1), has a typical Λ
configuration with upper level jai (P3=2, F ¼ 1) and
two lower levels jbi (S1=2, F ¼ 1) and jci (S1=2, F ¼ 2),
where jai ↔ jbi and jai ↔ jci are allowed dipole transi-
tions while transition jci ↔ jbi is forbidden due to
parity selection rule. The coupling fields EcðtÞ ¼
ŷ=2fE1eiðk1·r−ω1tÞ þ E2eiðk2·r−ω2tÞ þ c:c:g drive the transi-
tion jai ↔ jci with atomic transition frequency ωac.
The weak probe field EpðtÞ ¼ ŷ=2fEfðz; tÞeiðkf ·r−ωftÞþ
Ebðz; tÞeiðkb·r−ωbtÞ þ c:c:g excites the transition, jai ↔ jbi
with atomic transition frequency ωab. In the limit of
E1;2 ≫ Eb;f, we can approximately assume that all the
populations reside in level jbi and we obtain the equations
of motion for the coherences ρij

dρab
dt

¼−Γabρabþ i½Ωfeikf ·rþΩbeikb·reiΔt�e−iωft

þ i½Ω1eik1·rþΩ2eik2·re−iδt�e−iω1tρcb
dρcb
dt

¼−Γcbρcbþ i½Ω�
1e

−ik1·rþΩ�
2e

−ik2·reiδt�eiω1tρab: ð1Þ

Above, the Rabi frequencies are Ω1;2 ¼ ð℘ac · ŷ=2ÞE1;2,
Ωb;f ¼ ð℘ab · ŷ=2ÞEb;f, the detunings are δ ¼ ðω2 − ω1Þ,
Δ ¼ ðωf − ωbÞ, and the decay of optical coherences are
Γab ¼ ðiωab þ γabÞ, Γcb ¼ ðiωcb þ γcbÞ. We seek solutions

of the form ρij ¼
P

nσ
½n�
ij exp½iðΔk½n�

ij · r − ω½n�
ij tÞ�, where

Δk½n�
ij is the nth order wave vector mismatch. Considering

that the counter-propagating coupling fields and the forward
probe field are along the zdirection, the reflected fieldwill be
generated in the backward direction via phase-matching
conditionΔ ¼ −δ, and its frequency (for left incident beam,
namely toward þz) is ωb ¼ ωf þ δ. From the solution of
Eq. (1), one can obtain the zeroth-order and the first-

order terms of the coherence as σ½0�ab ¼ uA0 þ v ~A1 and

σ½1�ab ¼ u0A0 þ v0 ~A1, where the coefficients are defined as
u¼ ½α0− ðγ1β0=α1 − β1ζ2Þ− ðγ0β−1=α−1 − γ−1ξ2Þ�−1, v¼
ðβ0=α1−β1ζ2Þu, u0¼γ1u=α1−β1ζ2, v0 ¼ 1þ γ1v=α1−
β1ζ2, and αn ¼ 1 − BnDn − CnEn−1, βn ¼ BnEn, γn ¼
CnDn−1, ζn ¼ σ½n�ab=σ

½n−1�
ab (for n ≠ 0, 1), ξn ¼

σ½−n�ab =σ½−ðn−1Þ�ab (for n ≠ 0, 1). Moreover, the coefficients that
quantify the atomic parameters are defined as An¼iΩf=−
iΔfþγab−inδ, ~An¼iΩbe−iΔkz=−iΔfþγab−inδ, En ¼
iΩ�

2= − iΔf þ γcb − inδ, Bn¼iΩ1=−iΔfþγab−inδ, Cn ¼
iΩ2= − iΔf þ γab − inδ, Dn ¼ iΩ�

1= − iΔf þ γcb − inδ.
Here we have defined the detunings as Δf;b ≡ ωf;b − ωab.
Propagationof theprobe field isgivenby theMaxwell’swave
equation

∂2Ep

∂z2 −
1

c2
∂2Ep

∂t2 ¼ μ0
∂2P
∂t2 ; ð2Þ

where thepolarization in theEITmediumand thedefect takes
the formP ¼ N℘baρabðz; tÞ þ c:c: andP ¼ 0, respectively.
As noted earlier, only the zeroth-order and the first-order
terms are dominant in the coherence term ρab. Subsequently,
withinslowlyvaryingenvelopeapproximation,Eq. (2)yields
(in a steady state) the Schrödinger-like coupled mode
equation for theweak forward and backward traveling fields
generated by the probe in the spatiotemporal modulated
medium

i
d
dz

ψ⃗ ¼
�

κ11ðωfÞ κ12ðωbÞe−iΔkz
κ21ðωfÞeiΔkz κ22ðωbÞ

�

ψ⃗ ; ð3Þ

where ψ⃗ ¼ ðΩfΩb ÞT . The off-diagonal terms in the 2 × 2

matrix mix the waves while the diagonal ones are attenu-
ation coefficients associated with the probe field with
frequencyωf propagating in the zdirection, namely κ21ð12Þ¼
ð−ÞθbðfÞ½u0ðvÞ=γab−iΔfðbÞ�, and κ22ð11Þ ¼ ð−ÞθbðfÞ½v0ðuÞ=
γab − iΔbðfÞ�where θf;b ¼ ðNj℘abj2kf;b=2ℏϵ0Þ. Notice that
thefieldpropagationinatime-dependentspatiallymodulated
waveguide system is described by a similar equation [12].
Below, we assume that the EITmedium is composed of cold

FIG. 1. Schematic of a spatiotemporally modulated photonic
crystal with a static defect membrane at the center of the crystal.
The right inset schematically shows reflection (R) and the place
of localized mode for two different cases: (upper) no time
modulation where the localized mode is reciprocal, (middle
and lower) spatiotemporal modulation where the position of
localized mode depends on the direction of the incident beam.
The photonic crystal is formed (see the left inset) from a driven
Rb atom-cell (Λ-type three-level system) with a standing wave
field with detuning δ between the two components.
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rubidiumatomsdistributed homogeneously in a cell of about
2 mm in length, which has two parts separated by a SiN
dielectric membrane (defect) with 88.6 nm length and
refractive index n ¼ 2.2þ 10−4i.
Solving differential Eqs. (2) and (3) simultaneously and

using the transfer matrix method, we can calculate the
transmission (T) and reflection (R) from our moving
photonic crystal. Figure 2(a) depicts the transmission
and reflection coefficients vs probe detuning Δf in the
presence of the membrane and the detuning δ (normalized
with respect to decoherence rate between levels jai ↔ jbi;
γab) and with ωab ≈ 244 191.334 GHz. In the absence of
the membrane, the spatial periodicity of the dielectric
constant of the photonic crystal generates a Bragg reflec-
tion where photon propagation is forbidden in a window

known as the band gap. Thus, in the band gap the
transmission coefficient drops to zero. Considering the
intrinsic losses in the system, at the photonic band gap, the
reflection plus absorption sum to one. As depicted in
Fig. 2(a) by inserting the membrane into the cell, a defect
mode with nonzero transmission appears in the band gap at
Δf ≈ −0.12 MHz. We highlighted the position of this
mode with an arrow. Such a defect mode is a bound state
out of continuum and is created due to the resonances.
The transmission peak of the defect mode is reciprocal

and degenerate, namely, irrespective of the direction of the
incident field the transmission peak occurs at the same
frequency. When we introduce a nonzero detuning, i.e., the
permittivity of the photonic lattice becomes both space- and
time-dependent, degeneracy breaks and the frequency of
the defect mode associated with the left and right incident
beams becomes different. Neglecting the higher quasi
energies, we plotted left incident transmission and reflec-
tion in the Fig. 2(b) for δ ¼ 0.015γab. In this case, the
defect mode appears at the probe detuning Δf ≈
−0.37 MHz (see the green-dashed line). On the other
hand, in Fig. 2(c) we observe that for the right incident
field the defect mode appears at Δf ≈ −0.28 MHz (orange-
dashed line).
The transmission and reflection peaks at the defect mode

have a sharp feature in the absence of the losses.At the defect
state, photons are trapped and the electric field is localized
around the membrane. Specifically, the electric field
envelope decays exponentially as we move away from
the defect. This contrasts with the resonant peaks at the
scattering states where the field is distributed all over the
photonic crystal. In our photonic lattice, a comparison
between Fig. 2(a) and Figs. 2(b), (c) shows that due to
the time-dependent modulation position and width of the
band gap window vary when the detuning is changed and at
the same time it affects the position of the localized modes.
To distinguish the localizedmode from the scatteringmodes
one should plot the field distribution for the localized mode.
As long as the field has an exponential form we have the
trapping of photons. However, eventually for very strong
detuning, themodewill completelymergewith the band and
its associated field distribution will not have an exponential
shape. Specifically, one can use detuning to tune the mode
from being completely localized to a nonlocalized one. In
Figs. 3(a)–(i), we plotted the field distribution in the
photonic crystal for different detuning and at different probe
detuning. Specifically, in Figs. 3(a)–(c) we plotted the field
at Δf ¼ −0.1179 MHz (localized mode with exponential
form), Δf ¼ −0.2162 MHz (scattering mode), and Δf ¼
−0.5 MHz (a mode in the band gap) for δ ¼ 0. We clearly
observe the difference in the field distribution in each
case. To compare the field distribution for nonzero
detuning, we plotted the field for the left and right incident
beams at Δf ¼ −0.389 MHz, Δf ¼ −0.282 MHz, and
Δf ¼ −0.155 MHz for δ ¼ 0.015γab in Figs. 3(d)–(f) and

FIG. 2. (a) Transmission (red) and reflection (blue) for the static
and reciprocal photonic crystal (δ ¼ 0) with a defect in the middle
of the lattice. The defect mode appears at the Δf ≈ −0.13 MHz.
(b),(c) Left and right transmission and reflection for the space and
time-modulated photonic crystal (δ ¼ 0.015γab) with the defect in
themiddle of it. For the left (right) incident, (b),(c), the defectmode
is appeared at the Δf ≈ −0.38ð−0.29Þ MHz (see the insets),
highlighted with a dash green (orange) line. The position of the
dash line, shows that the frequency for which we have the defect
mode for left (right) incident beam, the right (left) incident beam
observes the band gap (bandpass) and has zero (finite) trans-
mission. The atomic parameters are γab ¼ γac ¼ 6 × 106 s−1,
Ω1 ¼ 30 × 106 s−1, Ω2 ¼ 25 × 106 s−1, N ¼ 1019 m−3.
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Figs. 3(g)–(i), respectively. In all cases for the defect mode,
the exponential decay around the membrane is clearly
observed. It is interesting that for Δf ¼ −0.389 MHz the
photons coming from the left sidewill be localized,while for
the same photons coming from the right they will be in
the band gap and get reflected. However, for Δf ¼
−0.282 MHz the photons coming from the right will be
localized and photonswith the same frequency coming from
the left side will be in the band and form a scattering mode
with finite transmission and reflection.
As discussed previously, the nonzero detuning between

the counterpropagating fields splits the defect modes
associated with the left and right incident beams. The
splitting is linear with respect to the detuning, similar to the
Zeeman effect, where a magnetic field splits the degenerate
modes. This similarity between time-dependent potentials
and the magnetic field is the basic principle behind the
breaking of the Lorentz reciprocity. However, to the best of
our knowledge, there is no report on the existence of a
nonreciprocal localized mode based on magnetic effects.
We mentioned earlier that the frequency of the localized
mode is linearly dependent on the detuning. In Fig. 4, we
numerically calculated the changes in the frequency of the
localized modes for the left and right incident fields vs the
detuning. A linear fitting shows that our anticipation is
correct, and it behaves linearly similar to the Zeeman effect.
Any type of isolator based on magnetic field or time-

dependent modulation needs an absorbing and/or filtering

channel to remove the undesired signal. Otherwise, in the
absence of the filtering channel, the undesired field will be
able to pass through the isolator after several forward and
backward propagations. Our proposal is not distinct in this
sense. However, in our case, the undesired signal is in the
gap and needs to travel several times to be able to pass
through our proposed isolator. For example, let us consider
the case represented in Figs. 2(b), (c) and assume that we
launch a signal from the left with a frequency associated
with the defect mode, namely at Δf ¼ −0.38. Thus, the left
incident signal can pass the lattice. On the other hand, if a
similar signal comes from the right, it will not pass the
lattice, and it gets reflected at the frequency ωb ¼ ωf − δ.

This process will continue nð¼ jΔpassband before the gap
f −

Δdefect
f j=δ ≈ j − 0.9þ 0.39j=0.09 ≈ 5Þ times until the fre-

quency of the reflected signal decreases to the value that
belongs to the passband frequency just before the band gap.
We mentioned earlier that, naturally, there are some
intrinsic distributed losses in our optical system.
Consequently, the undesired signal coming from the right
side observes the intrinsic losses n times more. Thus, our
proposal is more compact with respect to the other
isolators.
In conclusion, we have shown that by embedding a

defect in spatiotemporally periodic modulated photonic
lattice one can achieve a nonreciprocal defect mode where
the photons propagating in one direction become localized
and get trapped in the band gap, while in the opposite
direction, photons with the same frequency get reflected or
transmitted depending on the position of the mode in the
band gap window. This contrasts with the periodic spatial
modulated case where a defect generates a reciprocal defect
mode. Moreover, we showed that the position of the defect
mode is tunable and depends on the strength of the
temporal modulation. Specifically, the position of the
defect mode linearly changes with respect to the temporal
modulation. Our proposal can have an application in
designing compact isolators, circulators, unidirectional
sensors, and filters. Of great interest will be extending
the nonreciprocal localized mode to non-Hermitian defects,

FIG. 3. (a)–(c) Distribution of the field intensity for the zero
detuning (a) at the defect mode, (b) in the passband window, and
(c) in the gap. (d)–(f) Distribution of the field intensity for left
incident beam when δ ¼ 0.015γab (d) at the defect mode
Δf≈−0.38MHz, (e) in the passband window Δf ≈ −0.29 MHz,
and (f) at Δf ≈ −0.155 MHz. (g)–(i) Distribution of the field
intensity for the right incident beam when δ ¼ 0.015γab (g) at the
gap Δf ≈ −0.38 MHz, (h) at the defect mode Δf ≈ −0.29 MHz,
and (i) at passband withΔf ≈ −0.155 MHz. Notice that the defect
mode of the left incident beam is located at the gap for the right
incident beam while the defect mode of the right incident beam is
located at the passband and has a scattering feature.

FIG. 4. Position of the defect mode vs the detuning for the left
(squares) and right incident (circles) beams. A linear fit is
depicted by a continuous line on top of the symbols. The splitting
of the position of the modes shows a linear behavior similar to the
Zeeman effect, showing the similarities between time-dependent
modulated lattice and a magnetic biasing.
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such as a gain or loss medium embedded in the lattice,
which might lead to unidirectional lasing or absorption.
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