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We demonstrate both theoretically and experimentally nonparaxial Mathieu and Weber accelerating

beams, generalizing the concept of previously found accelerating beams. We show that such beams bend

into large angles along circular, elliptical, or parabolic trajectories but still retain nondiffracting and self-

healing capabilities. The circular nonparaxial accelerating beams can be considered as a special case of

the Mathieu accelerating beams, while an Airy beam is only a special case of the Weber beams at the

paraxial limit. Not only do generalized nonparaxial accelerating beams open up many possibilities of

beam engineering for applications, but the fundamental concept developed here can be applied to other

linear wave systems in nature, ranging from electromagnetic and elastic waves to matter waves.
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Self-accelerating beams have stimulated growing
research interest since the concept of Airy wave packets
was introduced from quantum mechanics [1] into optics in
2007 [2]. As exact solutions of the paraxial wave equation
(which is equivalent to the Schrödinger equation), Airy
beams propagate along parabolic trajectories and are
endowed with nondiffracting and self-healing properties
[2,3]. In the past five years, Airy beams have been studied
intensively both theoretically and experimentally [4].
Possible applications of Airy beams have also been pro-
posed and demonstrated, including guiding microparticles
[5], producing curved plasma channels [6], and dynami-
cally routing surface plasmon polaritons [7]. However, it is
important to point out that Airy beams are inherently
subjected to the paraxial limit. As such, when a self-
accelerating Airy beam moves along a parabola and even-
tually bends into a large angle, it will escape its domain of
existence and finally break down. Recently, research
efforts have been devoted to overcome the paraxial limit
of Airy beams, and circular nonparaxial accelerating
beams (NABs) have been identified theoretically and dem-
onstrated experimentally [8–11]. Those NABs, found as
exact solutions of the Helmholtz equation (HE) in circular
coordinates, travel along circular trajectories beyond the
paraxial limit, in a fundamentally different fashion from
the well-known Bessel, Mathieu, and parabolic nondif-
fracting beams that travel along straight lines [12–14].
However, unlike Airy beams, the circular NABs cannot
be simply scaled (by squeezing or stretching the transverse
coordinates) to obtain different accelerations, and their
beam paths have to be predesigned to match only certain
circular trajectories defined by the Bessel functions
[10,11]. This naturally brings about a series of fundamental

questions: Can a NAB bend itself along other trajectories
rather than circles? If so, would such a beam maintain its
nondiffracting and self-healing properties while bending to
large angles and different paths? Is it possible to find a
NAB that can be scaled to control the acceleration, thus
leading to beneficial practical implementations?
In this Letter, we demonstrate both theoretically and

experimentally nonparaxial Mathieu accelerating beams
(MABs) and Weber accelerating beams (WABs), general-
izing the concept of previously discovered accelerating
beams into the full domain of the wave equation. Such
new families of accelerating beams, found as exact solu-
tions of the HE in different coordinate systems without the
need of using the paraxial approximation, bend to large
angles along elliptical and parabolic trajectories while
preserving their unique nondiffracting and self-healing
nature. Furthermore, we show that the circular NABs found
previously represent only a special case of the elliptical
MABs, whereas the parabolic WABs represent a perfect
counterpart of the Airy beams but without the paraxial
limit and are absolutely scalable for acceleration control.
Experimentally, we demonstrate finite-energy MABs and
WABs bending to large angles beyond the paraxial limit
and observe their nondiffracting and self-healing propagation
in free space. Such new and generalized NABs provide larger
degrees of freedom for launching and controlling the desired
beam trajectories for practical applications. This approach is
applicable to other linear wave systems in nature, ranging
from electromagnetic and elastic waves to matter waves.
Let us first start with MABs by solving the HE in elliptic

coordinates. Here we seek a one-dimensional MAB MðxÞ
propagating along an ellipse in the x-z plane with the two
semiaxes a, b of the ellipse oriented along the transverse
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x and longitudinal z axes, as sketched in Fig. 1(a). By
setting a < b, the corresponding elliptic coordinates can
be constructed via the identities x ¼ h sinh� sin�, z ¼
h cosh� cos�, where � 2 ½0;1Þ and � 2 ½0; 2�Þ are

the radial and angular variables, respectively, and h ¼
ja2 � b2j1=2 is the interfocal separation. Assuming that
the MAB takes the form of Mð�;�Þ ¼ Rð�Þ�ð�Þ, the HE
can be split into the following modified and canonical
Mathieu differential equations:

d2Rð�Þ
d�2

� ð�� 2q cosh2�ÞRð�Þ ¼ 0; (1a)

d2�ð�Þ
d�2

þ ð�� 2q cos2�Þ�ð�Þ ¼ 0; (1b)

where � is the separation constant, q ¼ k2h2=4 is a
parameter related to the ellipticity of the coordinate sys-
tem, and k ¼ 2�=� is the wave number (� is the wave-
length in the medium). Solutions of Eqs. (1a) and (1b) are
given by radial and angular Mathieu functions [15]. To
form a MAB, the beam constructed from those solutions
shall travel along an ellipse and preserve the shape with
regard to the elliptic coordinate system. For simplicity, we
consider a MAB as

Mð�;�Þ ¼ Rmð�;qÞðcemð�;qÞ � isemð�; qÞÞ; (2)

where Rmð�; qÞ represents a radial Mathieu function,
while cemð�; qÞ and semð�;qÞ correspond to the even and
the odd solutions of angular Mathieu functions at the same
orderm, respectively. Note that Eq. (2) describes the typical

optical MABs of our interest, for which m> ð2qÞ1=2 is
usually a relatively large number so that the even and odd
radial Mathieu functions tend to merge [13,15,16].
Similar to the circular NAB cases [10,11], Eq. (2) indi-

cates that a perfect MAB circulates clockwise along an
ellipsewhile preserving its shape in the elliptical coordinate
system, thus representing a longitudinal elliptic vortex [16].
However, to construct an ideal MAB with infinite energy,
both forward and backward propagating components are
required. For a physically realizable beam emitted from a
single source and spatially self-accelerating while propa-
gating along the positive z axis, we take a similar approach
used in our previous work [11] to introduce a finite-energy
MAB. By transforming back into the Cartesian coordinates
and shifting the main lobe of the beam close to zero, the
finite MAB takes the following form at z ¼ 0:

M1ðxÞ ¼ expð��xÞH
�
xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � 2q

q
=k

�

� Rm

�
Re

�
arccosh

�
i

�
xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � 2q

q
=k

�
=h

��
;q

�
;

(3)

where HðxÞ is a Heaviside function, Re means the real
part, and � is a positive real number. Apparently, such a
beam contains either a forward or a backward propagating
component along an upper half-ellipse with a semiaxis

a � ðm2 � 2qÞ1=2=k, resulting in a maximum self-bending
of 180�. The Fourier spectrum associated with such aMAB
without the exponential truncation can be determined by

�1ðfxÞ ¼ ðk2 � f2xÞ�1=2 exp

�
ifx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � 2q

q
=k

þ i arctan

�
semðarccosðfx=kÞ;qÞ
cemðarccosðfx=kÞ;qÞ

��
; (4)

where fx represents the transverse spatial frequency.
By simply interchanging the x and z coordinates, we

can readily construct the MABs for the case a > b, for
which the beam propagates along the half-ellipses with

a � ðm2 þ 2qÞ1=2=k. In this case, the beam profiles and
their spectra can be determined by the following equations

M2ðxÞ ¼ expð��xÞH
�
xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2q

q
=k

�

� Rm

�
arccosh

��
xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2q

q
=k

�
=h

�
; q

�
; (5)

�2ðfxÞ ¼ ðk2 � f2xÞ�1=2 exp

�
ifx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2q

q
=k

þ i arccot

�
semðarcsinðfx=kÞ; qÞ
cemðarcsinðfx=kÞ;qÞ

��
: (6)

Equations (4) and (6) provide the mask information for the
generation of the MABs from the Fourier space [2,3].

FIG. 1 (color online). (a) Illustrations of different trajecto-
ries associated to Mathieu accelerating beams (MABs);
(b) amplitude of the MABs at a < b (blue, dashed), a ¼ b (black,
dotted), and a > b (red, solid) at z ¼ 0; (c) intensity (top) and
phase (bottom) of the Fourier spectra of the MABs in (b) as a
function of the normalized spatial frequency (fx=k); (d)–(f) Side-
view propagations of the MABs in (b), where the z ¼ 0 position is
marked by the white dashed line. Note that the horizontal and
vertical scales are identical in the figures.
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To examine the beam propagation dynamics of the above
formulized MABs, we perform numerical simulations by
solving the nonparaxial wave equations. The results at � ¼
532 nm,m ¼ 80, h ¼ 8:7 �m, � ¼ 104, are juxtaposed in
Figs. 1(b)–1(f), where (b)–(c) depict the beam profiles, the
intensities, and the phases of the Fourier spectra of the
MABs at z ¼ 0 for a < b, a ¼ b, and a > b. Apparently,
at a ¼ b (h ¼ 0), the MAB turns into a circular NAB. The
side-view propagations of the three beams are depicted in
Figs. 1(d)–1(f), respectively, where all the beams start from
a given position on the negative z axis. Note that the
horizontal and vertical scales are identical in the figures.
Clearly, the constructed MABs self-bend to large angles
along elliptical trajectories in contrast to the trajectory of a
circular NAB as shown in Fig. 1(e). Although the three
beams at z ¼ 0 are quite similar in both real and Fourier
spaces (the intensity of the spectra are identical for all three
beams), their trajectories of propagation and beam diffrac-
tion properties are distinctly different. As one can notice,
only the case a ¼ b corresponds to a true nondiffracting
NAB, while for the other two cases a < b and a > b, the
size of the main lobe of the MABs changes slightly after a
long propagation. The diffraction property of the MABs
will be revisited below.

We point out that Eqs. (4) and (6) contain nontrivial
information for unraveling the underlying physics of the
MABs. One simple fact is that the beam structure is deter-
mined by the combination of m and q. This means that, at a
certain desired beam width, one can set the beam into differ-
ent trajectories, resulting in a larger freedom for beam engi-
neering in comparison to circular NABs. Importantly, under
the condition q ! 0 or m ! þ1, Eqs. (4) and (6) tend to
merge and eventually turn into Eq. (5) in [11] for the circular
NABs except for a trivial phase constant, as illustrated in
Fig. 1(c). Under such a condition, a ! b, and consequently
the elliptic trajectory of the beam gradually changes into a
circle [see Fig. 1(e)]. This clearly indicates that the circular
NABs demonstrated recently in [10,11] represent a special
case of the MABs presented in this work. In addition, we
mention that Eqs. (4) and (6) derived here only involve the
solutions of Eq. (1b), which indicates that one can experi-
mentally construct MABs solely with angular Mathieu func-
tions, without the need of solving the high order modified
Mathieu equations.

Next, following a similar procedure for the MABs, let
us solve the HE for the WABs in parabolic coordinates
with z ¼ �	, x ¼ ð	2 � �2Þ=2, 	 2 ð�1;þ1Þ, and � 2
½0;1Þ. Assuming that the WAB takes the form of
Wð�; 	Þ ¼ �ð�Þ#ð	Þ, the HE can be split into [14,15]

d2�ð�Þ
d�2

þ ðk2�2 þ 2k
Þ�ð�Þ ¼ 0; (7a)

d2#ð	Þ
d	2

þ ðk2	2 � 2k
Þ#ð	Þ ¼ 0; (7b)

where 2k
 is the separation constant. The solutions of
Eqs. (7a) and (7b) can be determined by the same Weber

differential equation (also called parabolic cylinder differ-
ential equation) but the corresponding eigenvalues have
opposite signs [14,15]. To avoid complex notations, we
set 
 > 0 and construct a WAB propagating towards the
positive z axis as

Wð�;
Þ ¼ Wpð�;
ÞðWeð	;�
Þ � iWoð	;�
ÞÞ; (8)

where Wp can be either an odd or an even solution of

Eq. (7a), while We and Wo are the even and odd solutions
of Eq. (7b), respectively. The Fourier spectrum associated
with such a WAB reads as

’ðfxÞ ¼ expði
fx=kþ i
 lnðtanðarccosðfx=kÞ=2ÞÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � f2x

p : (9)

By taking fx=k � 1, one can readily prove that Eq. (9)
turns into expð�i
f3x=3k

3Þ=k, representing the typical
Fourier spectrum of an Airy beam. This clearly indicates
that the Airy beam is the paraxial approximation of our
WAB. In addition, we point out that, although such a WAB
comes from the exact solution of the HE and has infinite
energy, it contains only a forward or a backward propaga-
tion component, different from the MABs and circular
NABs. Therefore, a physically realizable finite-energy
WAB can be established solely by introducing an expo-
nential aperture. By transforming back into the Cartesian
coordinates, such a truncated WAB takes the form at z ¼ 0

WðxÞ ¼ expð��xÞWpð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ 
=k

q
;
Þ: (10)

From Eq. (9), one can readily deduce the mask information
needed for generating the WAB using the Fourier trans-
formation method.
Figure 2 shows a typical example of our WABs at � ¼

532 nm, 
 ¼ 40, and � ¼ 104 and its comparison with an
Airy beam with a similar beam size, where (a)–(d) depict
the beam profiles, the phases of the Fourier spectra [inten-
sity is the same as that in Fig. 1(c)], and the side-view
propagations of the WAB and the Airy beam, while (e)
illustrates the evolution of the beam widths over propaga-
tion for different beams. From Figs. 2(c)–2(e), it is obvious
that, although the WAB and the Airy beams are all sup-
posed to follow parabolic trajectories, the Airy beam
breaks up quickly when bending to large angles. In stark
contrast, the WAB can maintain their fine features well
beyond the paraxial regime. Similar to the MABs, although
the WABs are shape-preserving solutions in parabolic
coordinates, they are no longer perfectly diffraction free
after being transformed back to Cartesian coordinates.
Nevertheless, the diffraction of the MABs and WABs are
much weaker and largely suppressed in comparison with
that of a Gaussian beam of the same size, as shown in
Fig. 2(e). Considering there are no true linear nondiffract-
ing beams in reality, it is thus reasonable to consider the
MABs and WABs as nondiffracting beams.
Let us now compare the trajectories and accelerations

of the WABs and the Airy beams. A WAB determined by
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Eq. (10) follows x ¼ �ðk=4
Þz2, while an Airy beam
follows x ¼ �ð1=4k2x03Þz2 with x0 being the normaliza-

tion constant for the coordinate x. As such, a WAB accel-
erates along parabolic trajectories determined by the order

, similar to an Airy beam. From Eq. (7), one can readily
deduce that the WABs are scalable as well. Under the
normalization of x0, the beam trajectory turns into x ¼
�ðkx0=4
Þz2, and the corresponding beam profile is deter-
mined by Eq. (10) with the solutions of Eq. (7a) recasted by
normalizing k with 1=x0. Thus, one can control the accel-
eration of WABs simply by squeezing or expanding the
transverse coordinate x. Apparently, the WABs represent a
perfect counterpart of the Airy beams beyond the paraxial
limit. Notice that the phase mask embedded in Eq. (9) does
not contain any special function. Therefore, many applica-
tions proposed for the Airy beams may well be imple-
mented with controllable WABs.

To experimentally demonstrate the MABs and WABs,
we use the same setup previously used for generating
circular NABs [11], except that now the holographic masks
are reconfigured with both the phase and intensity infor-
mation required to generate the desired accelerating
beams. Specifically, a laser beam (� ¼ 532 nm) modulated
by a spatial light modulator is sent into a Nikon 60�water-
immersion objective lens (NA ¼ 1:0, f ¼ 2:3 mm) to syn-
thesize the beams. To directly visualize the beam path, a
nanosuspension containing 50 nm polystyrene beads is
used to scatter the light. Comparing to the conventional
method of directly Fourier transforming the phase masks
[2–4], our computer-generated holography technique
[11,17] is more feasible for constructing the NABs due

to the fine features in the phase gradient [see Figs. 1(c) and
2(b)] and the ability to encode the intensity information
[17]. Our experimental results are shown in Fig. 3, where
(a)–(e) are the direct top-view photographs if the beam
propagation is extrapolated from scattered light, and (f)
and (g) display the snapshots of the transverse patterns
together with the intensity profiles (along the x direction)
taken at z ¼ 0 and z ¼ 50 �m as marked by the dashed
lines in (d) and (e). From these figures, it can be seen that
different elliptical or circular beam paths can be prede-
signed by employing different holographic masks accord-
ing to Eqs. (4) and (6), in agreement with our theoretical
analysis of the MABs shown in Fig. 1 but atm ¼ 3132 and
q ¼ 2:6� 106. The results in Figs. 3(d)–3(g), correspond-
ing to Figs. 2(c) and 2(d), clearly illustrate that the WAB
(
 ¼ 1200) preserves its structure much better than the
Airy beam does.
Finally, we demonstrate the self-healing property of our

MABs and WABs—an interesting feature typical of non-
diffracting self-accelerating wave packets [3,4,10]. Figure 4
depicts the numerical and experimental results of the side-
view propagation when a MAB or a WAB encounters an
obstacle along its trajectory. In these cases, the obstacle
partially blocks the accelerating beams around the main
lobe. As expected, the MABs and WABs restore their beam
structures during subsequent propagation, as if they could
overcome the obstacle. The self-healing behaviors of the
MABs and WABs indicate the caustic nature of the beam
structures, which might provide more controllability from
the point of view of the nonparaxial caustics [9,18].
To summarize, we have proposed and demonstrated

new families of nonparaxial self-accelerating beams, lead-
ing to a novel, complete picture in terms of accelerating
beams. In particular, we show that, by designing the MABs
and WABs, optical beams with large-angle self-bending,

FIG. 3 (color online). Experimental side-view photography of
the generated MABs at a < b (a), a ¼ b (b), and a > b (c), a
WAB (d) and an Airy beam (e) taken from scattered light, where
the dotted curves plot the predesigned trajectories. (f) and (g) are
the transverse intensity distributions recorded at z ¼ 0 (f) and
z ¼ 50 �m (g) as marked by the dashed lines in (d) and (e),
where the top and middle rows correspond to the WAB and Airy
beam, respectively, and the bottom depicts the intensity profiles
taken along the dashed lines (marked in the transverse intensity
patterns). The dashed (red) and solid (blue) lines correspond to
the Airy beam and the WAB, respectively.

FIG. 2 (color online). Amplitude at z ¼ 0 (a) and phase of the
Fourier spectra (b) of a Weber accelerating beam (WAB) (blue,
solid) and an Airy beam (red, dotted); (c) and (d) depict the
side-view propagation of the WAB (c) and the Airy beam
(d) corresponding to the profiles in (a), where the white dashed
line marks the z ¼ 0 position; (e) illustrates the FWHM of the
main lobe of the beam versus the propagation length z for
different beams with the same main lobe size at input.
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nondiffracting, and self-healing features along designed
curved trajectories can be achieved, well beyond the para-
xial condition required for the Airy beams. One can directly
apply these beams in a variety of applications such as
light-induced plasma channels [6], microparticle manipu-
lations [5], and surface plasmon routing in the general
nonparaxial geometry [7]. In addition, the results presented
here can be easily extended to other linear wave systems
in nature. This approach opens a new door for exploring
accelerating wave packets in the nonparaxial regime.
Specifically, this raises many intriguing fundamental ques-
tions. For instance, could theMABs survive in the presence
of nonlinearities [19]? If so, is it possible to realize an
optical boomerang traveling along different closed trajec-
tories? Since the results directly stem from the Maxwell
equations, will such sharply bending NABs bring about
new spin-orbital interaction dynamics [20]? In addition, we
expect that many exciting results are yet to come when this
intriguing concept is applied to the time domain [21] or
beyond the diffraction limit [22].
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mental results (bottom) of the self-healing properties of a MAB
(left) and a WAB (right). (a) and (b) are for beams corresponding
to Figs. 1(d) and 2(c), and (c) and (d) correspond to Figs. 3(a)
and 3(d), respectively. The main lobe of the beam is blocked
by an opaque obstacle (white dot) at a certain propagation
distance. The diameter of the white dots in (a) and (b) is 1 �m,
and that in (c) and (d) is about 50 �m.
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