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Tunable oscillations in the Purkinje neuron
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In this paper, we experimentally study the dynamics of slow oscillations in Purkinje neurons in vitro, and
derive a strong association with a forced parametric oscillator model. We observed the precise rhythmicity of
these oscillations in Purkinje neurons, as well as a dynamic tunability of this oscillation using a photoswitchable
compound. We found that this slow oscillation can be induced in every Purkinje neuron measured, having periods
ranging between 10 and 25 s. Starting from a Hodgkin-Huxley model, we demonstrate that this oscillation can
be externally modulated, and that the neurons will return to their intrinsic firing frequency after the forced
oscillation is concluded. These findings signify an additional timing functional role of tunable oscillations within
the cerebellum, as well as a dynamic control of a time scale in the brain in the range of seconds.
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I. INTRODUCTION

The Purkinje neuron (PN) is the largest neuron in the
cerebellum, with over 100,000 inputs and a single output axon
[1,2]. Due to its geometry and orientation in the cerebellum,
it has been cited as a possible integrator for the motor control
system of the brain [2], with many basic neuroscience and
artificial intelligence theories based on its complex neuronal
network [3,4]. While most studies of the PN focus on biological
sources of memory (plasticity) [5,6], a number of studies
also describe the functionality of the cerebellum in terms of
independent oscillators [6–8].

We have previously reinforced this set of theories with an
experimental study demonstrating the intrinsic firing charac-
teristics of the PN [9,10]. We identified three frequency bands
inherent to the PN, which we denoted as the sodium (Na+;
>30 Hz), calcium (Ca2+; 1–10 Hz), and switching bands
(<1 Hz). This set of frequency bands is distinct from other
regions of the brain [11–14], with the “switching” frequency
described and measured for the first time [9]. This switching
frequency operates at lower frequencies than those typically
associated with memory and other cerebellar processes [14];
however, there have recently been parallel in vivo experiments
that have demonstrated similar slow oscillations between
0.039 and 0.078 Hz [15]. We have used the terminology
of digital circuits and nonlinear oscillators to describe the
switching from rapid firing to quiescence as an astable
mode, which oscillates between the “on” and “off” states
in a rhythmic pattern, without maintaining any single state
indefinitely (“astable”) [10]. This is in contrast with the known
bistable mode in the PN [16–18], where the firing rate can
be toggled between firing and quiescence and maintains that
state indefinitely; or a monostable mode where the PN has
been shown to fire rapidly in vivo with only brief pauses [19].
These three modalities are intrinsically linked, and we have
postulated that a system exhibiting one of these modes will
likely display the other modes under certain conditions [10].
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This paper attempts to validate this claim by focusing entirely
on the astable mode of firing.

In this paper, we first show that every PN measured here
in vitro can exhibit this slow form of astable oscillation
when activated using pharmacological compounds. These slow
oscillations are shown to be precise, maintaining the same
rhythmic oscillation frequency over time with high quality
factors of resonance. While we had previously described some
cells displaying this oscillatory switching when measured in
vitro, we show that this mode can be activated in every cell
measured, thereby indicating an inherent functional role. Next,
we modulate the frequency of these neurons using a unique
form of highly specific, photoswitchable compound [20]. By
doing this, we show that this frequency pattern acts as a forced
oscillator when externally driven, and that the oscillations
revert back to their initial frequency once the driving force
is stopped. Using the Hodgkin-Huxley neuron model [21], we
derive a form of parametric oscillator that describes the slow
oscillations observed, as well as their ability to be externally
tuned. Finally, we analyze the parameters of oscillation, and
compare them with the existing literature to further understand
the gating mechanism controlling this oscillation behavior of
Purkinje neuron cells. The results are summarized in terms of
neuronal oscillation models and cerebellar timing functions.

II. METHODS

Animal handling and care was done according to guidelines
set by the Office of Laboratory Animal Care (OLAC) at UC
Berkeley. Sprague-Dawley rats (aged 21 to 30 days) were
initially euthanized using isoflurane and then decapitated.
Their cerebella were isolated and 250-μm-thick parasagittal
slices were obtained using a vibratome (Leica VT1000s) while
submerged in a sucrose-based slicing media. Brain slices
were transferred to an incubation chamber containing artificial
cerebrospinal fluid (ACSF) bubbled with carboxygen (95%
O2/5% CO2) held at 37 ◦C for 1–4 h prior to experiment. For
a complete description of sample preparation, solutions used,
and the optical patch-clamp setup, please refer to [9], which
matched the experimental conditions here exactly.
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The stimulation of PNs was done by activating kainate
receptors using a variety of highly selective molecular kainate
receptor agonists (KRAs). These molecules act only upon
kainate receptors without activating any of the other gluta-
matergic receptors on the cell, particularly AMPA (α-amino-3-
hydroxyl-5-methyl-4-isoxazole-propionate) receptors, which
are the majority of ionotropic glutamatergic receptors on PNs.
Additional pharmacological blockers were used to isolate
the kainate response in the PN. The photoswitchable kainate
receptor agonist (PSKRA) [20] was used as a traditional KRA
when in the dark. The photoresponse is described in Ref. [20],
as well as in the text.

All drugs except the PSKRA were purchased via Sigma-
Aldrich or Tocris Bioscience. Drugs were applied to the
ACSF reservoir and allowed to perfuse onto the slice using
a closed-loop system. Kainate activation of the PNs was
achieved using either highly specific KRAs, or monosodium
glutamate (MSG, 100 μM) in conjunction with an AMPA
receptor blocker GYKI-52466 (10–20 μM). The KRAs
used consisted of the commercially available (2S,4R)-4-
methylglutamic acid (SYM-2081, 10–50 μM), a nonselective
GluK1/GluK2 agonist (nonselective for GluR5/6, selective
over AMPA receptors), as well as the PSKRA. The PSKRA
was based upon a variant of the commercially available SYM-
2081, called LY339434 [22], which was designed specifically
to be selective towards GluK1 (GluR5) over both GluK2
(GluR6) and AMPA receptors, and was used at 50–100 μM,
the ideal concentration as described in Ref. [20].

Additional network activity upon the cell was re-
moved via the application of tetrodotoxin (TTX, 1 μM),
which blocks most synaptic activity by silencing Na+ in-
duced action potentials. Inhibitory synaptic transmission
was blocked in some cells via the application of both
ionotropic and metabotropic GABA blockers [GABAA was
blocked with GABAzine (SR-95531), 10 μM, or picrotoxin,
PTX, 100 μM, and GABAB with 5-bis(1,1-dimethylethyl)-
4-hydroxy-a,a-dimethylbenzenepropanol (CGP, 20 μM)], as
well as blocking glycine (strychnine, 1 μM). (RS)-a-methyl-
4-carboxyphenylglycine (MCPG, 500 μM) was used to block
mGluR1/2 metabotropic receptors. Despite the PN having
no N -methyl-D-aspartic acid (NMDA) receptors, the possible
presynaptic release of glutamate via NMDA receptors on the
parallel fibers was preempted via the application of D-( − )-2-
amino-5-phosphonopentanoic acid (APV, 50 μM). Complete
blocking of excitatory glutamatergic inputs to the cell was
done by adding and 6,7-dinitroquinoxaline-2,3(1H,4H)-dione
(DNQX, 10 μM), which blocks both AMPA and kainate recep-
tors. For each of these network activity blocking experiments,
at least n = 2 cells were measured with the compounds listed
above.

Data analysis was done using a combination of PCLAMP

(Molecular Devices, Inc.), Microsoft Excel, and MATLAB

(Mathworks, Inc.) software. Patch-clamp sampling was done
at 10 kHz, and then decimated to 1 kHz for data analysis.
Period/duty-cycle (DC) tracking was implemented using a
custom code. The periods/DCs were tracked over time by
selecting overlapping windows in time (30–60 s each, different
for each cell), and collecting the start and stop times for spike
bursts. “Off” times were defined as any period longer than 2 s,
and the DC was calculated as the “On” times divided by the

full period (measured as the time between Off cycles, or On
cycles, within each window). Time-constant (τ ) evaluation
of the forced modulation via the PSKRA was done using
the MATLAB Curve Fitting Toolbox. The fitting was done
on a basic, time-shifted exponential decay function, of the
form x(t) = xf − �x/ exp[−(t − t0)/τ , with the parameters
dependent upon the data.

Fast Fourier transforms (FFTs) were done using standard
MATLAB functions. The confidence intervals on the spectrum
were found by fitting a Gaussian function to the peak using
the Curve Fitting Toolbox in MATLAB. This fitting provided
the 95% confidence intervals of the fit, which were plotted in
Fig. 2. The deviation of the oscillation frequency (in Fig. 2)
can also be measured by the full width at half maximum
(FWHM) as well as by fitting the Gaussian to obtain the
standard deviation. For a Gaussian fitting of the peak, the
standard deviation (SD) or σ is σ = FWHM/2.354. Broader
peaks indicate higher fluctuations in the frequency. The quality
factor Q of a resonator/oscillator is the ratio between the peak
measured and the FWHM, which is an equivalent measure to its
signal to noise ratio (SNR), or the reciprocal of the coefficient
of variation.

III. RESULTS

A. Induction of astability

We first demonstrate that PN will change its firing pattern
to that consisting of slow oscillations of Ca2+ spikes [23],
nested within a slow switching envelope wave, when measured
in vitro using a current-clamp setup. Figures 1(a) and 1(c)
display the recordings of two cells transitioning to this mode
after the application of KRAs in conjunction with tetrodotoxin
(1 μM), which abolishes the Na+ spikes, and accentuates the
underlying Ca2+ spike pattern, as well as an AMPA receptor
blocker (GYKI, 10 μM). The transition to a slow oscillation
mode consisting of switching and calcium frequencies occurs
after 0.5–2 min (green line in dotted box), after which a clear
oscillation pattern is shown (gray line in dashed box). Once
induced into this slow oscillation mode, the system retains its
rhythmic astability, with cells oscillating between firing Ca2+
spikes and quiescence for up to 40 min in some cells. The
oscillation frequency can be measured from the highest peak in
the FFT of the recording, as shown in Figs. 1(b) and 1(d) below
each recording. The sharp peaks in the FFT signify a clear
oscillation frequency. The existence of some low-frequency
peaks in the initial firing pattern in Fig. 1(d) reveal that this low
frequency was inherent to the cells, even before induction into
the astable mode via KRAs [9]. Results such as those displayed
in Fig. 1 were obtained in n > 50 cells, with induction into
the astable mode occurring in nearly all of the cells measured,
signifying the reproducibility of these results. Induction of
astability was possible using both the PSKRA in the dark (n >

50), as well as by using the commercially available compound
SYM-2081 (n = 8) from which the PSKRA was derived, as
well as using standard MSG in conjunction with blocking
the AMPA receptors (n = 3 of 5 cells; this method was less
preferable due to the initiation of a depolarization block at high
doses of MSG, 100 μM). The SYM-2081 was used to verify
that the result was reproducible to other methods of kainate
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FIG. 1. (Color online) Astability induction in a Purkinje neuron. [(a), (c)] Signal output recordings of cells transitioning to an astable
oscillatory mode after applying a kainate receptor agonist (PSKRA, 100 μM) in conjunction with an AMPA receptor blocker (GYKI, 10 μM)
and Na+ channel blocker (TTX, 1 μM). Clear oscillations are at the far right (gray line in dashed box), after a short transition period (green line in
dotted box). Inset: analogy between the astable firing/quiescence pattern with a digital oscillator switching between two states [(b), (d)] Fourier
transforms (power spectra) of the recordings before (black), during (green inset), and after (gray) the induction of oscillations (logarithmic
x axis). A clear peak at 0.075 Hz can be seen in (b), whereas a split peak centered at 0.07 Hz is seen in (d), signifying a transition between two
frequencies for this wave form. The transition period of the cell in (a) contained some low-frequency signatures, whereas the transition period
in (c) contained nearly no low-frequency signature (other than zero-frequency noise).

activation, and not an artifact of the photoswitchable moiety
of the PSKRA.

The frequency of the astable oscillations can be measured
by tracking the on/off transitions in time using a windowing
algorithm (see Methods), or directly by measuring the low-
frequency peak in the Fourier transform. This is shown in
Figs. 2(a) and 2(e) for two cells already induced into the
astable mode using different pharmacological methods. In both
recordings, a clear oscillation is seen for long periods of time
(9 and 5.5 min, respectively). The oscillation is shown in
Fig. 2(e) to consist of a sequence of Ca2+ spike bursts,
occurring even when the Na+ spikes are blocked with TTX.
Tracking the slow oscillation cycles in the time domain
[Figs. 2(b) and 2(f)] provide the average period (solid red line)
and standard deviation (SD, dashed gray line) in a directly
visible manner. In the frequency domain, the FFT provides
all frequency information about the signal [Figs. 2(c) and
2(g)], including higher frequency Ca2+ and Na+ spikes (if
they are present). The low-frequency peak is best seen when
no smoothing is added to the power spectrum, and the signal is
zero padded for higher resolution. This allows a direct measure
of the standard deviation (or FWHM) of the peaks in the bottom
of Figs. 2(d) and 2(h), when fitted with single Gaussians. Drifts
and shifts in the central frequency produce a broadening of the

peaks in the FFT, as well as the possibility of multiple peaks
appearing in the spectrum [as in Fig. 2(d)].

B. Tunability via photoswitching

Until now we have shown only the natural astability
frequencies measured in PNs after pharmacological induction;
this induction of astability is comparable to the naturally
occurring switching frequencies seen in control in vitro
experiments [9]. Presently, we show that the PN can act
as a forced oscillator, and thus extends the frequency range
available for oscillations. This tunability can allow the PNs to
produce a wider range of frequencies per cell, which can then
be integrated together in other regions of the cerebellum [10],
[24]. Using the PSKRA and the appropriate photoswitching
wavelengths, shown in Fig. 3(a), we can gradually toggle the
firing of Ca2+ spike bursts in a PN to a given oscillation period
[Fig. 3(b)]. We observed that the firing pattern then matches
the period of forced modulation. This was done at a wide range
of periods (6–30 s) and duty cycles (DCs, 25%–75%).

The tunability of cells using the PSKRA was effective in
all cells measured, with the slow oscillations following the
forced photomodulation. Additionally, in a few of the cells that
did not exhibit astability initially when in the presence of the
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FIG. 2. (Color online) Measuring the induced oscillations. (a) 9 minute recordings of a cell induced to oscillate via application of glutamate
(MSG, 100 μM) and an AMPA receptor blocker (GYKI, 10 μM). (b) The period of oscillation of bursts can be tracked over time to provide the
average period (solid red line) and standard deviation (dashed gray line). (c) The smoothed power spectrum provides all frequency information
of the recording, including calcium and sodium frequency modes [blue (dark gray) and green (light gray) arrows, respectively]. (d) Close-up
of the low-frequency peak, with no smoothing to the spectrum, displaying multiple peaks, which account for the drift and shift in frequency.
The central peak is fitted with a single Gaussian [green (light gray) line] with 95% confidence levels (dashed gray line), providing the standard
deviation. (e) 5.5 minute recording after the application of PSKRA, GYKI, and TTX (100, 10, and 1 μM, respectively), which blocks the Na+

spikes, as is seen in the lack of high-frequency activity in the power spectrum (g). The standard deviation in (h) matches that of (f) since the
single Gaussian fit is more accurate for this signal.

PSKRA in the dark (n = 5), the photomodulation still resulted
in forced oscillation, with the cells continuing to oscillate after
the photoswitching was stopped, as demonstrated in Fig. 3(c).

We therefore differentiate between two effects described
above: the induction of astability via the KRAs, which was
possible using both the PSKRA and commercially available
KRAs, and the tunability of the astability, which we show in
Fig. 3 to be reliably effective using the PSKRA. The attachment
of the PSKRA to the kainate receptors [25] (specifically,
GLUK1) ensured that the effect described here was mediated
solely by the kainate receptors. All experiments described
here were done in the presence of TTX and GYKI, thus
blocking both all action potentials in the slice (via the TTX)
and all excitatory AMPA receptors (via the GYKI). Blocking
all action potentials with the TTX effectively reduces neuro-
transmitter release. Therefore, by using the kainate-selective
compounds in conjunction with the AMPA-specific blocking
agent, and in further conjunction with the TTX, we ensured that
our results were kainate dependent [26]. Adding GABAzine
(10 μM) to the cell did not affect either the oscillatory
period or the ability to photomodulate the cell [see Fig. 3(d)],
thereby negating the possibility of an ionotropic inhibitory
feedback response regulating the oscillations. Similar tests
were done to block glycine receptors, metabotropic excitatory
and inhibitory receptors, and NMDA receptors (see Methods).
In all cases, the addition of these blockers had no effect on the
ability of the cell to oscillate, or the ability to photomodulate
the cell (at least n = 2 cells per drug study). These tests
were done to verify that the effect described was an inherent

response of the PN in vitro, and not the effect of other
synchronization events in the neuronal network, as has been
shown for the cerebellum [27] and cortical networks [28].

C. Delayed recovery of modulation

The dynamics of the recordings subsequent to the pho-
tomodulation were also studied. Figure 4(a) displays a
representative recording from a PN that was initially oscillating
at a natural period of 22 s [green (light gray) curve], and then
photomodulated for 2 min at 5 s on/ 5 s off [10 s period,
blue (dark gray) curve], and subsequently allowed to recover
(black curve). The PN faithfully follows the forced modulation
after 1–2 stimuli when the light is applied, and then slowly
recovers back to the natural oscillation period it had prior
to the stimulation, after the photostimulation is stopped. This
recovery response of the cell’s oscillatory modulation is similar
to a traditional forced oscillator, with an exponential recovery
after the forced modulation is stopped. This is best visualized
when plotting out the period and DC over time, as in Figs. 4(b)
and 4(c), which display both the period matching during
forced oscillation (dashed blue line) as well as the exponential
recovery (dotted red line).

The time constants for recovery have a distribution among
different cells, with a recovery time of 82 ± 48 s for the
period, and 70 ± 41 s for the DC. (n = 11 cells. Errors
are in SD, displaying the range of variation among cells.)
The long recovery time for this process is similar to other
forms of short-term memory in the brain (such as short-term
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FIG. 3. (Color online) Photoswitchable compound modulates the oscillation. (a) Comparison of the GluK1 selective compound LY339434
and the PSKRA, which has an added azobenzene moiety, rendering it photoswitchable at 500 and 380 nm. (b) The ultraviolet [UV, 380 nm,
as shown in violet (light gray) area] and cyan [500 nm, as shown in cyan (dark gray) area] light turn the bursting on and off, respectively,
as a function of the modulation period, here shown for two modulation patterns with differing periods. The stimulation pattern is noted to
the right of each recording, with stimulations at 15 s cyan, 15 s UV; 10 s cyan, 10 s UV (DC = 50%); and 7 s cyan, 5 s UV (DC = 42%).
(c) Photomodulation followed by induction of oscillation in a cell not displaying astability prior to the modulation. The cell continued to
oscillate after the photoswitching was completed. (d) Adding synaptic blockers to the solution (such as GABAzine, 10 μm, which blocks
GABA receptors) did not affect any of the photoswitching, resulting in identical traces before and after introducing the drugs, verifying the
kainate mediated effect.

depression [1,5]), allowing the cell to “remember” its forced
modulation for a short duration after the stimulus is applied,
however, the cells typically did not retain the forced frequency.
The direction of recovery was generally toward the natural
astable period in the cell prior to photomodulation, with forced
photomodulation of the cells done both below and above their
natural period [below: 5/5 s on/off modulation, n = 7; above:
10/10 s on/off modulation, n = 9; 15/15 s on/off modulation,
n = 4, with representative cell recordings in Figs. 4(d) and
4(e), respectively].

IV. PARAMETRIC OSCILLATOR MODEL

The bursting oscillations of the PNs are nondissipating, with
a clear frequency signature in the FFTs. We can simplify the
Hodgkin-Huxley equations [29–32] to reach a model similar
to the fundamental parametric oscillator equations to describe
this slow harmonic signal. This derivation can be applied
to any cell exhibiting slow rhythmic bursting, such as sleep
spindles [33], and is particularly applicable to the known
slow oscillatory firing patterns of the PN [16,30,34]. The
generalized formula for the membrane potential V , injected
current I , and membrane capacitance C, is [30,31]

CV̇ = −I −
∑

gix
ki
i (V − Ei), (1)

with each gating variable xi , being a function of the voltage:
ẋi = [x0i(V ) − xi]/τi(V ), which is a generalized differential
form for the gating variable as a function of the asymptotic
value of the gating variable x0i , and a generalized time constant
τi [32]. In Eq. (1), gi is the conductance per ion channel and

the (V − Ei) term is the driving force per ion channel. Taking
a time derivative of Eq. (1) results in

CV̈ = −İ −
∑ [

ġix
ki
i (V − Ei) + gi

d
(
xki

i

)
dt

(V − Ei)

+ gix
ki
i V̇

]
. (2)

Assuming that the injected current (I , if any exists) is
constant with time, and that the conductance coefficients gi

are also time independent, we can neglect the dI/dt and dgi/dt

terms, remaining with

CV̈ = −
∑ [

gi

d
(
xki

i

)
dt

(V − Ei) + gix
ki
i V̇

]
. (3)

Since we are interested in the slow changing terms only,
whose changes with time are of the order of the oscillation
period (10–25 s), we can isolate these terms by removing
them from the summation:

CV̈ = −gS

d
(
xs

S

)
dt

(V − ES) − gSx
s
SV̇

−
∑
fast

[
gi

d
(
xki

i

)
dt

(V − Ei) + gix
ki
i V̇

]
. (4)

In Eq. (4), the slow gating variable gS has an exponent
of s. We will assume that this exponent is unity, since the
slow action of our experimental results is somewhat similar
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FIG. 4. (Color online) Recovery from the photomodulation follows a forced-oscillator model. (a) Exemplary recording of a Purkinje neuron
showing a natural oscillation [green (light gray) curve] that is then photomodulated at 5 s on [violet (light gray) area] /5 s off [cyan (dark gray)
area] with a 10 s period for 2 min [blue (dark gray) curve], and then allowed to recover from the modulation (black curve). [(b), (c)] Period
and duty-cycle tracking of the cell in (a), displaying the forced-modulation (dashed blue line) and exponential recovery. Dots are color coded
as in (a). Red dotted lines are fitted exponential curves for the recovery segment, with a time constant of τ = 124 s and τ = 67 s for the period
and duty cycle, respectively. [(d), (e)] Representative plotted periods of the natural, modulated, and recovering oscillators for two different
modulations: (d) 10/10 and (e) 15/15 on/off, in seconds (τ = 97, 40 s, respectively). Actual recordings appear below each plot.

to that of either the muscarinic gating variable M , or h for
the Ih refractory current, both of which have an exponent of
unity [30,31].

The rightmost bracketed term in the summation can be
taken as the average value for long periods where the fast
acting terms within these brackets change at a rate that is
much higher than the slow oscillations examined here. This
is because the time derivative d/dt for long time durations
is defined by changes of the order of 1/T = fS , which is
the switching frequency of the cell. This is comparable with
taking the average membrane potential during the firing of
action potentials, otherwise known as the “up” state of a
bistable system [16], such that we are dealing only with a
slow wave form that is similar to a square-wave envelope [as
shown in the inset of Fig. 1(a)]. With these assumptions, we
obtain

CV̈ = −gSẋSV + gSẋSES − gSxSV̇

−
〈∑

fast

[
gi

d
(
xki

i

)
dt

(V − Ei) + gixiV̇

]〉
avg

. (5)

The middle term gSẋSES can further be isolated, since
it is a term that is directly dependent upon the time, but
only indirectly on the voltage. Reorganizing the above equa-
tion, we can obtain a generalized second-order differential

equation:

CV̈ + gSxSV̇ + gSẋSV

= gSẋSES −
〈 ∑

fast

[
gi

d
(
xki

i

)
dt

(V − Ei) + gixiV̇

]〉
avg

. (6)

Or, if we replace the time average of the faster spikes with
a constant

CV̈ + gSxSV̇ + gSẋSV ≈ gSẋSES + 〈const〉avg . (7)

Comparing this to the harmonic oscillator with a driven
source, F (t) [35]:

mV̈ + bV̇ + kV = F (t). (8)

Equation (8) is the classic equation for a driven harmonic
oscillator with a resonant frequency of ω2

0 = k/m and a quality
factor of Q = ω0m/b, with F (t) being the time-dependent
driving input. Comparing terms, we find that

m = C, b(V,t) = gSxS, k(V,t) = gSẋS. (9)

As can be seen, the parameters of this equation are
time/voltage dependent. This makes the equation a parametric
oscillator as opposed to a simple harmonic oscillator. The
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parameters in Eq. (9) are related to the biological and measur-
able aspects of each neuron, with the membrane capacitance
directly measurable, and the gating variables measurable using
voltage-clamp experiments to determine the dynamics of the
ion channels involved.

If the oscillator is underdamped (Q > 1/2, which is
equivalent to b � ω0), it is easy to then measure the resonance
frequency of the Purkinje neuron (2πf0 = ω0) as well as
the quality factor Q, from the signal-to-noise ratio (SNR).
The frequency of an oscillating Purkinje neuron can be
measured directly in the frequency domain, and the SNR can
be calculated either through the time-tracking algorithm, or
from the width of the peak in the FFT. The frequency of
the damped oscillator, which is the experimentally measured
switching frequency ωS = 2πfS , is related to the resonance
frequency

ω2
0 = ω2

S/[1 − 1/(4Q2)], (10)

with Q taken as the SNR. For highly precise oscillating
neurons with Q > 2: ωS ≈ ω0. Therefore, by measuring
these two parameters (fS and Q), and taking a general value
of the membrane capacitance of C = 1 μF/cm2 [31], we
can obtain estimations for the parameters k and b. This
value of the membrane capacitance is used to provide an
order-of-magnitude estimation of the relevant parameters.

Equation (7) is the parametric oscillator equation for an
oscillating neuron that can be analyzed using phase-space
diagrams [32]. Obtaining the van der Pol oscillator equation
from the Hodgkin-Huxley equations follows a similar method.
Floquet analysis posits that the signal of the oscillation should
vary similarly to the source. Since the measured signal from the
cell is periodic in time, we can inversely infer that the gating
variable is also periodic, with the same frequency. Equation (7)
therefore gives the driving force of the parametric oscillation
as a function of the gating variable.

V. DATA ANALYSIS

The period (1/frequency) and DC of the astable mode were
measured in n= 43 cells, each oscillating for at least 3 min, and
are displayed in Figs. 5(a) and 5(b). Since each cell acts as an
independent oscillator, it is expected to find a range of inherent
frequencies. We found that the average period of the cells was
20 ± 8 s, and the average DC was 46 ± 8% ( ± SD). We
again note the similarity between the range of slow oscillations
measured here, and those measured in vivo in PNs in tottering
mice, which ranged between 12.82 and 25.64 s [15]. There
appears to be a slight increase in the period with the application
of the SYM-2081/MSG in comparison to the PSKRA (24 ± 7
vs 19 ± 8 s; verified with a two-tailed t test, assuming unequal
variance, p < 0.013). The cause of this variation may be due to
the concentrations used, as low concentrations of SYM-2081
(10 μM) did not induce oscillations, but only continuous Ca2+
spikes, and that the effective “active” concentration of 100 μM
PSKRA in the dark is not uniquely defined [20].

The precision of oscillation over time can be measured
by the quality factor of the resonator Q or the SNR. This
was measured using the window-tracking algorithm in the
time domain, for each of the cells measured, and displayed
in Fig. 5(c) for each individual cell. Of the PSKRA activated
cells, 45% [n = 13/29, blue (dark gray) circles] had a SNR
larger than 10, corresponding to less than a 10% deviation in
period over time, whereas the SYM-2081/MSG activated cells
were less accurate [green (light gray) triangles]. This may be
attributable to either the selectiveness of the PSKRA, or the
concentration ratios.

Using the formalism of the parametric oscillator above, we
can view each PN as an independent oscillator, each with its
own measurable parameters of oscillation. To obtain an order
of magnitude approximation for the channel conductance, we
can use the time and voltage averaged value for the gating
variable, which is normalized to vary between 0 and 1 [32],
such that 〈xS〉 ≈ 0.5. Therefore, using Eq. (9), we can relate the
measured quantities to find the conductance: 〈b〉 = gS 〈xS〉 ≈
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FIG. 5. (Color online) Period, duty-cycle,
and precision of oscillation. [(a), (b)] His-
tograms of the average period and duty cycle
(n = 43 cells total) showing the central fre-
quency of 20 s/0.05 Hz, and 46% duty cycle
in total (black). The cells could be broken
down to PSKRA activated cells (horizontal
blue, n = 29) and SYM-2081/MSG activated
cells (diagonal green, n = 14), with periods of
24 ± 7 and 19 ± 8, respectively. (c) Quality
factor or SNR data for the PSKRA [blue (dark
gray) circles] and SYM-2081/MSG [green
(light gray) triangles] activated cells, as a
measure of the precision of oscillation. Each
cell is plotted individually, with the PSKRA
activated cells having higher precision values.
(d) Histogram of the time averaged value
of the slow gating variable for each cell.
The average value of 〈gS〉 was 0.12 ± 0.1
μS/cm2.
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gS/2 and b = Cω0/Q from the experimental measurements.
This procedure provides an order-of-magnitude result only,
since each cell has its own membrane capacitance, and since a
substantial number of approximations were used to obtain the
relationship in Eq. (9).

Implementing this calculation on the n = 43 cells for the
time-averaged gating variable for each cell is displayed in
Fig. 5(d). Each oscillator is independent, with an average
channel conductance of 〈gS〉 = 0.12 ± 0.1 μS/cm2. Once
again the SD is of the same order as the mean, signifying that
this average value provides a wide range for the conductance.
This value of channel conductance is far smaller than those
of existing channels listed for the PN, which are as low
as 30–300 μS/cm2 for gh [30,36] and 40–750 μS/cm2 for
gM [31,36], both of which are known to activate on scales of
roughly under 1 s. The relationship between the h current and
bistability has previously been shown for PNs with similar time
scales of switching [16], as well as in 1–2 Hz rhythmic bursts in
thalamic relay neurons, which have gh = 0.015–0.03 μS (not
normalized to cm2) [37]. Due to the units of the membrane
capacitance (μF/cm2) and low frequency of astability, the
values for the conduction are quite low, and match the low
frequency of oscillation of these PNs. Since the time scale
of these astable oscillations is orders of magnitude longer
than those of Na+ and Ca2+ spikes, and since the kainate
receptors which mediate this effect only comprise ∼5% of
the ionotropic glutamate receptors on the PN [38], this low
conductivity channel would appear to describe a conduction
pathway that is not currently incorporated into existing PN
models [30,31,36,39].

VI. CONCLUSIONS

This work has shown the capability of a PN to act as an
astable oscillator with long periods of oscillation (10-25 s), as
well as the ability to externally tune this frequency for extended
periods of time. This frequency range is notably outside the
range typically studied in the brain [11–14], but matches other
in vivo results of the PN [15]. The approximate range of the
channel conductance mediating this oscillation was also shown
to be outside that of the traditionally modeled channels [39].

This work describes a new functional role for the PN,
that of an astable oscillator in the cerebellum. The astable
oscillator is the basic form of clock for most modern circuits
[10], and the long periods of the bursting mode described in
Figs. 1 and 2 correspond to a timing cycle that is outside
the realm of frequencies typically studied in other parts of
the brain [11,12], as well as in the cerebellum itself [14].
The long periods measured here lie in the region of temporal
recognition that is between the realm of high-frequency action
potentials and our own conscious thought [40], and similar
timing modes in other regions of the brain should be searched
for in order to parallel this newfound capability of the PN in the
cerebellum. The KRA induction of this clocking mode is quite
different from the well-known induction of gamma frequencies
(30–80 Hz) in other parts of the brain [41]. The similarity
with those faster oscillations is comparable to our analysis
of the calcium frequency (1–15 Hz) in the PN [9], which is
closer to the theta frequency band (5–10 Hz) [11]. While we
had previously shown calcium frequency activation using the

KRA ATPA, as well as a partial modulation capability of the
calcium frequency with the PSKRA [9], we here show that
the kainate receptor activation using PSKRA and SYM-2081
(both molecular variants of each other [20,22]) can reliably
induce and modulate the switching frequency, which is here
denoted as the astability frequency. Furthermore, while we had
previously shown inherent switching frequencies only in some
in vitro “control” preparations, this work demonstrates that
nearly every PN can be induced into an astable state under the
influence of certain KRAs. There have been no other reports
of sub-1 Hz kainate induced oscillations in any region of the
brain.

The ability to tune this clock externally adds another dimen-
sion to this paradigm, since it allows a variable clock speed to
be considered. This would be an essential characteristic of a
dynamic control system, which the cerebellum is theorized to
act as [1,6,24]. This short duration entraining of the switching
frequency can be accomplished externally using synaptic
transmission, which was here emulated with the PSKRA. It
is unknown if there is a similar long-term memory capability
for plastically changing the rhythm of this astable behavior.

The assumed existence of such a timing functionality of
the PN in the cerebellum also lies in complete agreement with
temporal pattern generator theories of the cerebellum [24].
We have previously postulated that the PN can act as the basic
timing circuit for the cerebellum [10], since it has demonstrated
both monostability and bistability, and is here shown to exhibit
both constant and tunable astability. Since a temporal pattern
generator would require the ability to combine a full range of
frequencies, the three frequency ranges of the PNs [9] can help
recreate nearly any mathematical signal via inverse Fourier
expansion.

The source of the slow oscillation was here described in
terms of the possible periodic gating variable dynamics of
the parametric oscillator model, as well as the dependence
upon the poorly understood kainate receptors in the PN [26].
This can be compared with a parametric variation of the
resistors and capacitors connected to a multivibrator circuit,
which can transition such a circuit between astable, bistable,
and monostable modalities (see Fig. 5 in Ref. [10]). The
transition between each of these modalities would be possible
via an external modification to the PN’s inputs, such as is
known to occur with the climbing fiber input to the PN,
which can toggle the bistability of the PN’s membrane voltage
[16–18]. We here showed the induction of the astable modality
using KRAs, which are typically not considered in most PN
models. The activation of astable oscillations in cells such
as in Fig. 3(c) signifies that the inherent capability of the
PN to oscillate may need to be externally activated, perhaps
via the surplus of glutamate in the synaptic clefts, which
would activate all the kainate receptors on the cell. Both the
parametric oscillator and multivibrator circuit models predict
this phenomenon, since a parametric oscillator will only begin
to oscillate once its parameters are initially perturbed, and
an astable multivibrator circuit will only oscillate once one
of its external components are thermally perturbed. Using
mathematical dynamic systems, circuit modeling and newly
derived optical activation techniques [25] will allow us to
probe the intrinsic behavior of cells within a network, thereby
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enabling us to reverse engineer the neuronal circuitry of the
brain at a higher complexity.
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