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ABSTRACT

In classical and quantum systems, order is of fundamental importance to many branches of science. Still, disorder is prevalent in our
natural world. It manifests in various ways, and overcoming its limitations would open up exciting applications. In this work, we
numerically show that disorder-induced Anderson localization can be mitigated and transmission systematically restored in random
media through a self-organization process relying on energy dissipation. Under the scattering pressure produced by a driving optical
field, a colloidal suspension composed of strongly polydisperse (i.e., random size) particles spontaneously assembles a Bloch-like mode
with a broad transmission band. This mode displays a deterministic transmission scaling law that overcomes the statistical exponential
decay expected in random media. This work demonstrates that, through the continuous dissipation of energy, amorphous materials can
collectively synchronize with a coherent drive field and assemble a crystalline order. Self-organization, thus, offers a robust approach for
addressing the physical limitations of disorder and immediately opens the door to applications in slow-light engineering and the devel-
opment of “bottom-up” photonic materials.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0055926

The effects of disorder are pernicious in science and often hinder
technological progresses. In both organic1 and inorganic2 condensed
matter, the effects of imperfections manifest at different scales,3 often
limiting electron mobility,4 and, in extreme cases, cause material phase
transitions.5,6 In the quantum world, disorder severely impacts the
properties of quantum gases7 and prevents many-body systems from
reaching thermal equilibrium (e.g., in many-body localization8).
Disorder also remains an increasing concern in photonics. With the
progressive convergence toward nanoscale dimensions, nanophotonic
technologies become fundamentally limited by fabrication imperfec-
tions, which are inherent to both “top-down”9 and bottom-up pro-
cesses10 alike. Imperfections introduce both scattering losses—energy
lost through radiation to the surroundings—and backscattering
effects—coherent perturbation of the forward-propagating wave-front.
The later effect ultimately leads to unwanted random-interference-
based spatial confinement, known as Anderson localization.6,11

Backscattering stands as the major limitation for the realization of
high-group-index structures, such as slow-light waveguides12,13 and

resonant optical nanocavities,14,15 which would require fabrication
precisions better than state-of-the-art top-down technologies can over-
come.16,17 The challenge of mitigating disorder has led to the develop-
ment of post-fabrication correction schemes (e.g., through thermal18

or electrical19 tuning), which are difficult to scale to architectures with
many components. Alternatively, different mechanisms, such as topol-
ogy20 or cascaded locking,21 have been explored to suppress the impact
of disorder. Yet, these approaches come at the price of either breaking
time-reversal symmetry (e.g., through the application of strong mag-
netic fields) or strong optical nonlinearities, which are both difficult to
achieve at optical frequencies.

Self-organization defines a class of bottom-up processes enabling
the assembly of massive numbers of nanoscale particles to fabricate
low-cost devices. The most common approach among such technolo-
gies is self-assembly—in which, elements are led to relax (e.g., through
a chemical reaction) toward an ordered equilibrium state.22 While
self-assembly has been proposed to fabricate components like color
displays23 or solar-cells,24 it is not immune to the effects of disorder.
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A major concern is element polydispersity, for which stable large-scale
structures often require size dispersions below a few percent.25 In
contrast to the self-assembly of equilibrium structures, dissipative self-
organization of non-equilibrium structures is an alternative bottom-
up approach, occurring when structures are driven to organize
through the coordinated and constant dissipation of energy.22 This
mechanism is common in nature, giving rise to dynamic structures
and behaviors, such as collective flocking in both schools of fish and
swarms of fireflies.26,27 Dissipative self-organization has found many
analogues in artificial living systems28 and has recently been reported
to form self-healing and self-adaptive bandgap crystals.29,30 At the
macro-scale, the reproduction of this process is led to the formation of
non-equilibrium structures similar to animal flocks,31 which often dis-
play a unique robustness to element heterogeneity (i.e., size disper-
sion),32 external perturbation,29 and environmental disorder.33 Yet,
dissipative self-organization has never been envisioned to mitigate the
impact of imperfections in the manufacturing of bottom-up devices.

In this Letter, we numerically demonstrate that strongly disor-
dered media, governed by Anderson localization, can systematically
assemble crystal-like order. A colloidal suspension of polydisperse
nanoparticles self-organizes to form Bloch-like modes when driven
by the radiation forces exerted by a monochromatic scattered field.
Independently of disorder strength, an anomalous transmission
response emerges following a universal scaling law unexpected for
random media. This disorder-protected mode is characterized by a
spatially asymmetric profile and a non-Lorentzian group-index reso-
nance that strengthens linearly with the number of particles.
Dissipative self-organization is shown to be mechanically robust
and reliably reproducible in media with size dispersion greater than
an order of magnitude. These results demonstrate that coherently
driven self-organization could enable the enhancement of broad-
band transmission and slow-light characteristics in disordered
structures.

The self-organization of an ensemble of N random-sized
Rayleigh scatterers is simulated using a transfer matrix formalism
(supplementary material). The particles are assumed to be made of
zinc-oxide and are viscously damped in a background solution while
being constrained to move in one dimension along a single-mode
waveguide [Fig. 1(a)]. The diameter of the nth particle, Dn, follows a
Gaussian distribution with a varied dispersion r and mean
D ¼ 100 nm. The size dispersion results in an inhomogeneity in the
reflection coefficients, Rn. We numerically simulate the action of an
incident monochromatic drive of wavelength k0 ¼ 1:5 lm. The drive
is collectively scattered, and its momentum is transferred to the par-
ticles through optical forces, Fn; which depend on the difference in
intensity across each particle. Starting from random initial spacings
(t ¼ 0), the particles spontaneously converge toward a steady state
(t ¼ tss) where they move at identical speeds and their spacings
remain constant over time (supplementary material Fig. S1). At steady
state, the kinetic energy is constantly balanced with the dissipation of
viscous friction and a uniform force distribution is reached, which cor-
responds to the momentum being equally shared among elements—
i.e., Fn ¼ FS ¼ 2 1�TSð Þ

N 8 n (in which the steady-state total transmis-
sion, TS, is analytically derived in the supplementary material). For
small-dimensions scatterers, we observe that the particles redistribute
within the optical field close to maxima of field intensity (supplemen-
tary material Fig. S2).

Despite strong initial disorder, dissipative self-organization sys-
tematically produces steady states with anomalous and spectrally
broad transmission windows [two distinct examples provided in
Fig. 1(b)]. Before the drive is turned on, the transmission spectra dis-
play many Anderson-localized modes (peaks in blue curves), which
are signatures of the strong disorder present in the random medium.34

During the self-organization, the particles move and, thus, dynamically
reshape the optical states—pushing modes out to form a bandgap29

and merging modes to create the transmission window. The final
steady-state transmission spectra (orange curves) are characterized by
a continuous transmission band of width Dk � 350 nm for N ¼ 50
and with close-to-100% maximum transmission. Such transmission
response is reproduced over multiple disorder configurations for
increasing population sizes, N , and different size dispersions, r
[Fig. 1(c) and inset, respectively]. The spectral width slowly reduces
with the number of particles, N , and appears robust against large dis-
order strength r (inset).

The emerging order also displays an intrinsic protection against
parametric perturbations [Fig. 1(d)]. A steady state is organized out of
a population of N ¼ 50 particles, and at a specific time (red star), the
index of refraction of each element is randomly changed (modification
of 25%, supplementary material). Despite this major perturbation
across the whole system, a stable steady state with similar properties
reforms, thus emphasizing an intrinsic and dynamic protection against
disorder.

While transmission channels in strongly disordered media are
governed by randomly distributed Anderson-localized modes,35 here,
the broadband response self-organizes into a deterministic distribution
resembling a Bloch mode—regardless of the degree of disorder. This
self-organization is driven by a synchronization of the phase of the
driving field. Starting at t ¼ 0, the initial phase distributions of the
polydisperse particles sets are utterly random (supplementary material
Fig. S3); however, after self-organization the steady-state phase distri-
bution, UBðnÞ [inset Fig. 1(a)], systematically approaches a uniform
distribution with element-to-element phase differences held close to p
[black, dark, and light blue curves in Fig. 2(a)]. At the far end of the
structure, UBðnÞ deviates from p due to the open-boundary condition.
This nearly uniform p-phase distribution resembles that of a Bloch
mode in a periodic medium, which, like in photonic crystals, is associ-
ated with a band edge mode with a bandgap at lower wavelengths and
a transmission band at longer wavelengths (supplementary material
Fig. S4 and discussion therein). Our steady-state phase distribution is
enforced by the mechanical steady-state condition, which requires
identical forces on individual particles (i.e., F1 ¼ � � � ¼ FN ¼ FS).
Therefore, UBðnÞ is ensured to be close to p regardless of the distribu-
tion of particle sizes. Using the mean particle reflectivity R, in the sup-
plementary material, an approximation-free analytical expression for
the mean phase distribution is derived and reads UB nð Þ ¼ p� dðnÞ,
where

d nð Þ¼1
2
asin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ N�nð ÞR
1þN�n

s0@
1
Aþ1

2
asin R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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�acos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Rð Þ 1þ N�nþ1ð ÞR

� �
1þ N�nð ÞR

s0@
1
A: (1)

Applied Physics Letters ARTICLE scitation.org/journal/apl

Appl. Phys. Lett. 118, 231103 (2021); doi: 10.1063/5.0055926 118, 231103-2

Published under an exclusive license by AIP Publishing

https://www.scitation.org/doi/suppl/10.1063/5.0055926
https://www.scitation.org/doi/suppl/10.1063/5.0055926
https://www.scitation.org/doi/suppl/10.1063/5.0055926
https://www.scitation.org/doi/suppl/10.1063/5.0055926
https://www.scitation.org/doi/suppl/10.1063/5.0055926
https://www.scitation.org/doi/suppl/10.1063/5.0055926
https://www.scitation.org/doi/suppl/10.1063/5.0055926
https://www.scitation.org/doi/suppl/10.1063/5.0055926
https://www.scitation.org/doi/suppl/10.1063/5.0055926
https://www.scitation.org/doi/suppl/10.1063/5.0055926
https://scitation.org/journal/apl


Importantly, UB nð Þ does not depend on the polydispersity r and
perfectly matches our numerical calculations [red curves in Fig. 2(a)].
Larger dispersions show larger variations about UB nð Þ [black, dark,
and light blue error bars in Fig. 2(a)]; however, the mean response
holds true so long as the mechanical steady-state condition is met. The
influence of open-boundary condition at the right-end side can also be
observed in the spatial distribution of particles within the optical field
[supplementary material Fig. S2].

The universality of the steady-state phase distribution causes the
transmission of the drive to similarly follow a deterministic and uni-
versal scaling law that is independent of disorder strength. Figure 2(b)
displays the mean transmission at k0, T ðk0Þ, as a function of system
size L (obtained by increasing the number of particles, N) and under
the different dispersion used in Fig. 2(a). Before self-organization, and
as expected for random media, the systems decay as T k0ð Þ
/ exp �L=nrð Þ, in which nr stands for the localization length (identi-
cal to the scattering length in 1D systems7) After self-organization, the
mean transmissions systematically collapse onto a singular curve (inset

zoom), which follows a non-exponential scaling law (TS k0ð Þ / 1=LÞ.
Remarkably, this emergent trend is deterministic and independent of
disorder strength, r, appearing in both weakly disordered systems (i.e.,
L < nr) and strongly disordered systems governed by Anderson local-
ization (i.e., L > nr). An analytic expression for the mean transmis-
sion across the ensemble can be found in the supplementary material
and reads

TS k0ð Þ ¼
1� R

1þ R N � 1ð Þ ; (2)

which is red plotted in Fig. 2(b) and matches our numerical results.
This inverse-linear (i.e., 1=L) trend ensures that, regardless of disorder
strength, transmission will be restored for long structures compared to
typical un-organized exponential decay.

In addition to the restoration of transmission, the self-organized
system assembles a slow-light resonance at k0. The formation of reso-
nances has been reported in other macro-scale periodically driven

FIG. 1. Emergent transmission within a polydisperse random medium through dissipative self-organization. (a) Schematic of system geometry and self-organization. An array
of randomly sized nanoparticles begins randomly distributed along a 1D optical waveguide (t ¼ 0, top diagram). A coherent drive (red arrows) is inserted from the left end.
The field scatters among the particles causing them to move (green arrows). The system reaches a steady-state configuration (t ¼ tSS, bottom diagram), in which the particles
are mechanically stable and move collectively away from the source (orange arrows). Inset: from the ðn� 1Þth to the nth particles the forward component of the field Eþn accu-
mulates a phase UB nð Þ, while a phase of �UB nð Þ is accumulated on the backward component E�n . (b) Two transmission spectra (blue) corresponding to two distinct initial
arrangements of N ¼ 50 particles with a dispersion of r ¼ 5%. The steady-state spectra obtained after self-organization are plotted in orange with the full-width-half-maximum
Dk transmission window labeled in gray. (c) Width of the transmission window as a function of the number of particles within the ensemble. Data shows the average and stan-
dard deviation from 10 simulations corresponding to different initial particles sets. The transmission window Dk decreases with the addition of more particles, yet it appears
robust against large particle dispersion r (inset). (d) Transmission at drive wavelength, T k0ð Þ, as a function of time for a system of N ¼ 50 particles. The system is first self-
organized (t < 680). Then, at t ¼ 680 (red star), the indices of refraction are randomly modified and the system dynamically reconfigures to re-form a high-transmission
steady state (t > 1050).
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self-organized systems.36 Here, this feature materializes through the
emergence in the transmission spectrum of a band edge at k0
[Fig. 3(a)]. The emerging band edge defines a resonance in the density
of optical states37 that one can observe in the group-index spectra,
ng kð Þ, displayed in Fig. 3(b). The amplitude of the resonance, ng k0ð Þ,
is shown to increase linearly with the addition of more particles [inset
Fig. 3(b)], which relates to the stiffening of the band edge when
increasing N [Fig. 3(a)]. Remarkably, the observed group-index reso-
nances appear with an unusual asymmetric shape. Such resonances
describe a kind of modes that fundamentally differs from conventional
slow-light modes reported in both photonic crystals37 and Anderson-
localized systems,34 which typically exhibit symmetric Lorentzian
profiles. The origin of such asymmetry is revealed by the spatial distri-
bution of drive field intensity [Fig. 3(c)]. Rather than being exponen-
tially decaying or exponentially localized—as expected in random
media, here the field intensity progressively decays and extends across
the full length of the structure. In the supplementary material, we
show that the self-organization of the optical field at steady state pro-
vides spatial-correlation properties similar to ideal crystals (supple-
mentary material Fig. S5).

The observed self-organization is remarkably robust to very inho-
mogeneous sets of particles with up to a factor 10 in size dispersion.
While conventional bottom-up approaches like self-assembly typically
require highly monodispersed particles (r ¼ 3% in Ref. 38) this
approach demonstrates an ability to assemble strongly polydisperse
elements. To analytically estimate the tolerances in size dispersion, we
first consider that the mechanical steady state holds only when the
momentum of the drive field is uniformly distributed among

elements—which reads Fn ¼ FS 8 n. This transfer of momentum
varies with particles’ sizes. Thus, for extreme size dispersion, the exis-
tence of small or large particles might prevent the formation of a
mechanically stable steady state and lead to collisions. The require-
ment of stability places a restriction on the reflection coefficients of
individual particles, Rn, which we find must be constrained within
boundaries solely imposed by the reflectivity of the last particle, RN

(supplementary material). This restriction reads

DR�n þ RNð Þ < Rn < DRþn þ RN

� �
8 n 2 1;N½ �; (3)

in which

DR6
n

RN
¼ 2 N� nð Þ 1þ RN N� nð Þð Þ

2RN N � nð Þ þ 1ð Þ2

� 1� 2RN6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ N � nð Þ 1þ RN N � n� 1ð Þð Þ

N� nð Þ 1þ RN N� nð Þð Þ

s0
@

1
A:

(4)

An example of the stability condition derived from Eq. (4) is plot-
ted in Fig. 4(a). Equation (3) applies independently to each particle, as
numerically confirmed in Fig. 4(b). The stability condition is imposed
by the second-to-last or N � 1ð Þth particle [Fig. 4(a)], from which

we obtain the reflection coefficient range Rmin;Rmax½ � � RN
6 ; 6RN

h i
that reveals independent of N. Translated into an equivalent diameter
[supplementary material Fig. S6(a)], the stability range for a system
with an average diameter of D ¼ 100 nm must have individual

FIG. 2. Universal response of the self-
organized system. (a) Curves of the
phase accumulated, UB nð Þ, at k0 by the
forward propagating field in the self-
organized system between successive
particles along the structure—i.e., from the
n� 1ð Þth and nth element [inset of
Fig. 1(a)]. The three different curves show
the phase distribution for r ¼ 3%, 4%,
and 5% (black to light blue) averaged over
10 simulations. All data fall onto the same
analytic mean steady-state phase distribu-
tion, UB nð Þ [red lines, Eq. (1)]. (b) Trend
for the transmission at k0 as a function of
the length of the structure for r ¼ 3%,
4%; and 5% (black to light blue). Before
self-organization, the trends decay expo-
nentially. After self-organization, all curves
fall onto the single analytical trend,
T S k0ð Þ, provided in Eq. (2) (red curve
with inset zoom highlighting the collapse
to the trend line).
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FIG. 3. Emergence of slow-light resonances through self-organization. (a) Transmission spectra near k0 for three different system lengths (N ¼ 20; 50; and 80 particles;
curves are orange, red, and dark red, respectively) and r ¼ 5%. (b) Group-index spectra near k0 for the three systems of (a). The inset shows the linear increase in the group
index at k0 as a function of the number of particles (data taken over 10 different random configurations). (c) Spatial profiles of the self-organized mode at k0 for the three differ-
ent structures used in panels (a) and (b). In each case, the field extends over the entire length of the structure and shows a progressively linear decay away from the source
(located at x ¼ 0).

FIG. 4. Robustness of self-organization against particles dispersion. (a) For N ¼ 10 particles with RN ¼ 8:82%, the ensemble self-assembles if each individual reflection coef-
ficients, Rn, lay within the stability boundaries of Eqs. (3) and (4) (orange region). The smallest stability range is indicated by the dashed blue lines and is imposed by the sec-
ond-to-last particle. (b) Numeric confirmation of the analytic expression of Eqs. (3) and (4) for a set of N ¼ 10 with r ¼ 5%, in which the reflection coefficients of the n ¼ 3rd
and n ¼ 9 th particles are varied by changing their refractive indices. The orange (respectively, white) region corresponds to the stability (respectively, instability) domain, in
which the system self-organizes (respectively, collapses). The sizes of the stability domains (DR3;DR9) correspond to the theoretical prediction of Eq. (4).
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diameters restricted to 34 nm � Dn � 340 nm. supplementary mate-
rial Figs. S6(b) and S6(c) display self-organization examples for large
size dispersion (r ¼ 20%).

In this work, we demonstrated that highly disordered materials
can be driven to self-organize into a well-protected ordered photonic
structure. Our system spontaneously synchronizes the drive phase to
form Bloch-like modes through coherent momentum sharing among
elements. The transmission of these modes is governed by a determin-
istic scaling law, which exceeds the exponential decay expected in ran-
dom media and is revealed to be independent of disorder strength.
Simultaneously, we showed that the system assembles a group-index
resonance (i.e., slow-light mode) that strengthens with system size.
The self-organization process is robust over large particle dispersions
and could be integrated with photonic technologies to create scalable
photonic devices and mitigate the effects of disorder in general and
backscattering in particular. Thus, our results introduce a pathway for
the conception of backscattering-free slow-light devices with perform-
ances only limited by scattering losses. While state-of-the-art slow-
light structures are mainly limited by backscattering (scaling as n2g),

39

such devices could potentially reach orders-of-magnitude-higher
group indices (scattering losses only scaling as ng). Finally, although
this work focused on the self-organization through particle motion,
recent works suggest that similar responses can be replicated in solid-
state platforms,30 which highlights that dissipative self-organization
could be readily extended to other branches of physics and condensed
matter systems.

See the supplementary material for the numerical procedure fol-
lowed to observe self-organization and the analytical derivations of
Eqs. (1)–(4) are described in the supplementary material. There, we
also discuss the formation of a crystal-like organization at steady state
and provide all the supplementary figures mentioned throughout the
text.
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