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Metal-halide perovskites are promising materials for opto-
electronic devices such as solar cells and light-emitting 
diodes1–8. These materials offer low-cost solution proces-

sibility, highly efficient light absorption, tunable electronic bandgap 
and long carrier diffusion length1–4. However, the air- and photo-
instability of three-dimensional (3D) metal-halide perovskites has 
limited the long-term commercial viability of these materials. Two-
dimensional (2D) layered perovskites have emerged as a more stable 
alternative. These perovskites are based on quantum wells consist-
ing of alternating layers of inorganic perovskites (wells) and bulk 
organic spacers (barriers), and the halide perovskites are protected 
by organic cationic layers, resulting in enhanced stability9–21.

Progress in the development of photodetection based on 
perovskites has been limited primarily by trade-offs in responsiv-
ity, detectivity and response rate22–25. The fundamental issue is that 
a high photocurrent requires materials with excellent crystallinity 
for efficient charge conduction26–28, and a low dark current demands 
a large population of either defects or barriers to inhibit the trans-
port of thermally excited carriers29. Thus, there appears to be an 
inherent paradox to combine both high resistance for suppressed 
dark currents and good conduction for enhanced photocurrents in 
single-phase materials. For example, high photocurrents and high 
dark currents are harvested simultaneously in 3D single-crystalline 
perovskites26–28, whereas low photocurrents and low dark currents 
coexist in polycrystalline perovskite films due to the presence of 
grain boundaries that act as scattering centres30,31.

Two-dimensional Ruddlesden–Popper layered perovskites are 
promising materials for photodetection due to their highly aniso-
tropic structure that integrates both intra-well charge conductive 
channels and resistive hopping barriers in orthogonal orienta-
tions9–21. However, challenges remain in the selective inhibition of 

dark current and enhancement of photocurrent along the direction 
of charge transport. Exotic edge states in 2D Ruddlesden-Popper 
perovskites were recently discovered, which enable rapid dissocia-
tion of bound excitons and sustain long-lived free carriers13. This 
edge characteristic creates new possibilities to crosslink the intra-
well exciton formation to orthogonal free-carrier edge conduction.

In this Article, we designed and fabricated 2D-perovskite 
nanowire arrays (Ruddlesden–Popper layered perovskites of (BA)
2(MA)n−1PbnI3n+1, where BA =​ butylammonium, MA =​ methyl-
ammonium, and n =​ layer number, 2–5 in this study) with a pure 
(101) crystallographic orientation. Each wire length is oriented 
perpendicular to the perovskite layers, and the spatially confined 
height and width are parallel to the perovskite layer. The geometry 
was designed based on three considerations: a tens of micrometres 
channel length consists of thousands of serial hopping barriers that 
largely suppress the dark current; excitons efficiently diffuse to the 
edge along short-length single-crystalline perovskite layers and dis-
sociate into long-living free carriers for boosted photocurrent; and 
arrays amplify the photoresponse. Compared to polycrystalline thin 
films (Fig. 1a)—with sub-hundred-nanometre crystallites, large-
quantity surface defects and grain boundaries—single-crystalline 
nanowires allow efficient charge transport in well layers (Fig. 1b). 
With photon (hv) input, the high number of exposed layer edges can 
efficiently dissociate tightly bound excitons into free carriers, which 
provides a channel for generating and conducting photocarriers 
(Fig. 1c). Additionally, the layer edges concentrate photocarriers 
from the crystal interior to the surface, which results in direct car-
rier injection to the top-contact electrodes. Thus, our device design 
enables a high resistance for suppressing the dark current and a 
high-photoconductivity channel. Based on the nanowire arrays, we 
demonstrated photodetectors with state-of-the-art figures of merit, 
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including average responsivities of more than 1.5 ×​ 104 A W−1 and 
detectivities of more than 7 ×​ 1015 jones.

Development of layered-perovskite nanowires
We fabricated 2D-perovskite nanowire arrays through a capillary-
bridge rise approach on an asymmetric-wettability topographical 
template (see Supplementary Figs 1, 2 and Supplementary Note 1 for 
details). The crystal structure of synthesized 2D perovskites is con-
firmed by X-ray diffraction (XRD) and indexed as pure phase with 
layer numbers of 2–5 (Supplementary Fig. 3)32. Capillary-bridge rise 
experiments were carried out by combining an asymmetric-wetta-
bility template with the target substrate (see experimental details in 
Supplementary Fig. 4 and Supplementary Note 2) and the underly-
ing mechanism was explained by lattice Boltzmann method simula-
tions (Supplementary Figs. 5, 6).

The transmission electron microscopy (TEM) image of a 
nanowire of n =​ 4 2D perovskite in Fig. 1d shows no detectable 
grain boundary, indicating its single-crystalline nature. The corre-
sponding selected area electron diffraction (SAED) pattern (Fig. 1e)  
presents sharp diffraction spots, assigned to the [040] and [101]  

zone axes, revealing the high crystallinity of the nanowire with a 
preferential growth direction along the (010) orientation. Strict 
alignment, precise position and homogeneous size of nanowire 
arrays (Fig. 2a, Supplementary Fig. 7) are revealed by morphologi-
cal characterization under scanning electron microscopy (SEM). 
The low-magnification SEM images (Supplementary Fig. 8) depict 
high-quality nanowire arrays over a large area. To characterize the 
crystallographic orientation over the macroscopic scale, XRD and 
grazing incidence wide-angle X-ray scattering (GIWAXS) analyses 
were performed on nanowire arrays. The presence of only (111), 
(202) and (313) peaks in the XRD diagram (Supplementary Fig. 9a)  
and discrete diffraction spots in the GIWAXS patterns (Fig. 2b, 
Supplementary Fig. 9c,d), which can be assigned to (101)-oriented 
2D perovskites, indicates the pure crystallographic orientation of 
nanowires. For n =​ 2 perovskites, mixed (101) and (010) crystallo-
graphic orientations were observed (Supplementary Fig. 9a,b). The 
X-ray and electron diffraction results demonstrate that the single-
crystalline nanowires of n =​ 3–5 perovskites are self-organized with 
alternating layers of semiconducting wells and insulating barriers 
along the growth direction of the nanowires, while exposing abun-
dant edges on the surface. In contrast, the thin films fabricated by 
the spin-coating method feature lower crystallinity, small crystallite 
sizes and ubiquitous grain boundaries (Supplementary Fig. 10).

The absorption spectra of n =​ 3–5 perovskite nanowires manifest 
redshift absorption edges ranging from 1.6–1.8 eV, in striking con-
trast to a sole absorption peak at 2.18 eV in n =​ 2 perovskites (Fig. 2c).  
The photoluminescence (PL) spectra (Fig. 2d) also illustrate a marked 
difference between n =​ 2 and n =​ 3–5 perovskites: the PL peak at 
2.05 eV of n =​ 2 nanowires corresponds to the band-edge radiative 
recombination, whereas the PL emissions range from 1.6 to 1.7 eV for 
n =​ 3–5 perovskites. By performing confocal PL mapping on exfoli-
ated crystals (see experimental details in Supplementary Note 3),  
we validate the low-energy PL emissions localized at the layer 
edges (that is, from edge states) in n =​ 3–5 perovskites, whereas the 
crystal interiors exhibit higher-energy emissions (Supplementary  
Fig. 11). The coincidence of photon emissions from nanowires and 
edge states suggests that the layer edges dominate the photon emis-
sions in nanowires of n =​ 3–5 perovskites. The time-resolved PL 
mapping illustrates that the photocarrier lifetimes localized at layer 
edges are longer than those in crystal interiors, indicating that the 
carriers localized at layer edges and in crystal interiors stem from 
two different energy levels (Supplementary Fig. 12).

To identify the essence of photogenerated species, we monitored 
the excitation-power-dependent PL emissions of exfoliated crystal 
interiors and nanowires (Supplementary Fig. 13). The integrated 
PL intensities of crystal interiors and nanowires follow the power 
law, I(P)~Pα, where I(P) is the integrated PL intensity at the excita-
tion power P, and α is a coefficient. The crystal interiors of n =​ 2–5 
perovskites exhibit high-energy PL emissions with near-unity 
α values (Fig. 2e), revealing the monomolecular exciton recom-
bination in crystal interiors. These results are rationalized by the 
relatively large exciton binding energy, exceeding 200 meV in 2D 
perovskites9,13. In stark contrast, the n =​ 3–5 perovskite nanowires 
manifest lower-energy emission (1.6–1.7 eV) with α values ranging 
from 1.4 to 1.8, which evidences the emergence of bimolecular free-
carrier recombination (Fig. 2f)13,33,34.

Given that the layer edges are located on the surfaces of nanowires 
and that photogenerated excitons in crystal interiors possess a lim-
ited diffusion length (determined as 152.2 ±​ 8.2 nm, Supplementary 
Note 4, Supplementary Figs. 14, 15, Supplementary Table 1), we 
measured PL emissions and photocurrents of nanowires with differ-
ent cross-sectional sizes. A series of wires with heights in the range 
0.15–1.5 μ​m and widths in the range 0.4–10.5 μ​m was fabricated by 
tuning the widths of micropillars and the concentrations of precursor  
solutions (Supplementary Figs. 16, 17). Height-dependent PL emis-
sions are observed in n =​ 4 wires (Fig. 2g, Supplementary Fig. 18): 
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Fig. 1 | Schematics of 2D-perovskite photodetectors. a,b, Illustration 
of photodetectors based on polycrystalline thin films (a) and single-
crystalline nanowire arrays (b) of 2D perovskites. Abundant grain 
boundaries and surface defects in polycrystalline thin films can suppress 
the photocurrent of devices by trapping, scattering and recombination of 
photoexcited carriers (inset in a). c, Scheme of carrier dynamics in the 
photodetector of single-crystalline (101)-oriented 2D perovskite. This 
device design integrates insulating organic barriers in the carrier-transport 
pathway for suppressing the dark current with a highly photoconductive 
channel, provided by the exposed crystalline edges, for exciton dissociation, 
free-carrier conduction and charge injection. d, Representative TEM image 
of a single-crystalline nanowire of n =​ 4 2D perovskite. Scale bar, 500 nm.  
e, Corresponding SAED pattern of the nanowire.
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for a wire of less than 200 nm in height, a single PL peak centred at 
1.65 eV can be detected; with the increase of wire height, the high-
energy excitonic emissions at 1.90 eV become more recognizable; 
as the height exceeds 1 μ​m, the excitonic emissions dominate the 
PL spectra.

The height dependence of PL emission provides unambigu-
ous evidence of exciton dissociation into free carriers at the 
layer edges of nanowires. First, the possible mechanism of car-
rier transfer from low- to high-layer perovskites can be clearly 
ruled out for the low-energy PL emissions in wires, owing to the 
lack of height dependence17,19. Second, the height response indi-
cates competition between the exciton recombination in crystal 
interiors and exciton dissociation at the layer edges located on 
the surfaces of wires. For wires with heights comparable to the 
exciton diffusion length, excitons generated in crystal interiors 
can be effectively concentrated at layer edges and then dissoci-
ate into free carriers, and thus edge-state emissions. In contrast, 
for wires with heights far exceeding the exciton diffusion length, 
the excitons recombine and emit high-energy photons in crystal 
interiors before diffusing onto surfaces. To validate this mecha-
nism, we further compared the PL emissions in both the presence 
and absence of electron quenchers on wires with different heights 
(Supplementary Fig. 19). The PL intensities at 1.65 eV experi-
ence a sharp drop after the addition of a quencher layer, whereas 
the populations of high-energy excitons are less susceptible to 
the quenchers, suggesting that low-energy photocarriers are  

concentrated on the surfaces and high-energy photocarriers are 
located in crystal interiors.

To evaluate the role of edge states on carrier transport, we char-
acterized the height-dependent photocurrents of perovskite wires. 
By increasing the height from 0.17 to 1.37 μ​m, the photocurrent 
densities of n =​ 4 perovskite wires undergo a two orders of magni-
tude decrease (Fig. 2h, Supplementary Fig. 20). The observation of 
low photocurrents, together with exciton-dominated PL emission 
in thick wires, suggests that excitons in crystal interiors contribute 
little to the photoconductivity. In other words, the edge states domi-
nate the dissociation of excitons, and production and transport of 
free carriers for 2D-perovskite nanowires. We also compared the 
photocurrent densities of n =​ 2 perovskite wires with different sizes 
(Supplementary Fig. 21). The inconspicuous height dependence of 
photoconductivity for n =​ 2 perovskites with only excitons confirms 
the importance of edge states in free carrier transport.

Ultrasensitive photodetection
Based on these carefully designed and prepared nanowires, we 
examined the figures of merit of the photodetectors. Figure 3a  
presents the dark currents of nanowire photodetectors. The 
n =​ 2–4 perovskite nanowires exhibit low dark currents below 
10−12 A, whereas the n =​ 5 nanowires present an increased dark 
current exceeding 10−10 A (Fig. 3a), comparable to its 3D coun-
terpart22,26. We attribute the suppressed dark currents of 2D 
perovskite nanowires to the serial insulating organic barriers in 
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Fig. 2 | Single-crystalline 2D-perovskite nanowires with free-carrier generation at layer edges. a, SEM image of n =​ 4 perovskite nanowire arrays, which 
presents strict alignment, precise position and homogenous size of nanowires. b, GIWAXS pattern of n =​ 4 nanowires. The discrete diffraction spots 
can be assigned to n =​ 4 perovskite with the (101) crystallographic orientation. c,d, Absorption and photoluminescence (PL) spectra, respectively, of 
n =​ 2–5 nanowire arrays. In striking contrast to n =​ 2 perovskites, the n =​ 3–5 perovskite nanowires manifest redshift absorption edges at 1.6–1.8 eV and 
redshift PL peaks centred at 1.6–1.7 eV, which signal the presence of edge states. e,f, Excitation-power-dependent integrated PL intensities recorded on 
exfoliated crystal interiors (e) and nanowires (f) of n =​ 2–5 perovskites. Insets present representative PL spectra of crystal interiors and nanowires of n =​ 4 
perovskites. The integrated intensities of PL emission follow a power law, I(P) ~ Pα, where I(P) represents the integrated PL intensity at the excitation power, 
P, and α is a coefficient. The near-unity α values indicate only the presence of monomolecular excitonic recombination in exfoliated crystal interiors, while 
α values ranging from 1.4 to 1.8 in nanowires of n =​ 3–5 perovskites evidence the emergence of bimolecular free-carrier recombination. g, PL emission of 
n =​ 4 perovskite nanowires with different sizes. The weight of excitonic emission at 1.9 eV increases with increasing wire height, indicating that the layer 
edges located on the surface of wires dominate the dissociation of excitons and generation of free carriers. h, Photocurrent density of n =​ 4 perovskite 
nanowires with different sizes. With increasing wire height, the dramatic fall of photoconductivity, together with the rise in the exciton population, 
suggests that free carriers localized at layer edges, instead of excitons in crystal interiors, dominate the photoconduction.
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the carrier-transport channels, which is evidenced by the pure 
(101) crystallographic orientation with alternating wells and bar-
riers along the growth direction. The steep increase of dark cur-
rent in n =​ 5 nanowires might be caused by the reduced number of 
barriers in the channel and increased defect populations, reflected 
by the poorer diffraction signals (Supplementary Fig. 9d) and 
higher measured trap density (Supplementary Figs. 22, 23). Under 
light illumination, the n =​ 4 perovskites manifest the highest pho-
tocurrents (Fig. 3b). The dramatic increase of photocurrents for 
n =​ 3–5 nanowires compared to the n =​ 2 nanowires highlights the 
essential role of layer edges for free-carrier generation and trans-
port in achieving high photoconductivity.

To measure the responsivities and specific detectivities of photo-
detectors, we monitored the photocurrents under frequency-mod-
ulated light illumination (see Methods). Representative frequency 
responses of currents under different irradiances are displayed in 
Supplementary Fig. 25. The lowest measured irradiance achieves 
2.33 ×​ 10−6 mW cm−2 for n =​ 4 nanowire photodetectors, correspond-
ing to a light power of 0.58 fW with an operating area of around 25 μ​m2.  
The slow response restricts n =​ 2 nanowires for frequency-modu-
lated photodetection under low irradiances, whereas the detectable 
irradiance of n =​ 5 devices is limited to 2.37 ×​ 10−4 mW cm−2 owing 
to the large dark current. The photocurrents at a modulation fre-
quency of 30 Hz for n =​ 2–5 perovskite nanowires are presented in 
Fig. 3c and the responsivities (Fig. 3d) are calculated by R =​ Iph/P, 
where Iph is the photocurrent and P is the illumination power. Under 
an irradiance of less than 10−3 mW cm−2, the photocurrents exhibit 
a linear response to irradiances, giving rise to irradiance-indepen-
dent saturated responsivities (Fig. 3c,d, Supplementary Fig. 24). 
Under irradiances exceeding 10−3 mW cm−2, we observed a fall in 

the responsivities and the rise of 3 dB frequencies (Supplementary 
Fig. 25), suggesting the filling of traps and enhancement of many-
body effects shorten the lifetimes of excitons and free carriers under 
high irradiances, and hence the loss of photoconductive gain but 
the promotion of response speed. The response time of the n =​ 4 
nanowire devices was determined as 27.6 μ​s for rise and 24.5 μ​s for 
decay under an irradiance of 229 mW cm−2 (Fig. 3e), which is much 
faster than that exceeding 1 ms for n =​ 2 nanowires and that for n =​ 3 
and 5 perovskite nanowires (Supplementary Fig. 26).

With the synergy of suppressed dark currents and boosted 
photocurrents in 2D-perovskite nanowires, we evaluated the spe-
cific detectivity by determining the noise. The noise currents of 
n =​ 2–5 perovskite nanowires (Fig. 3f) are dominated by 1/f noise 
in the low-frequency region and approach the shot noise limit, 
Ishot =​ (2eIdark)1/2, where e is the elementary charge, Idark the dark cur-
rent, at high frequency. Compared to n =​ 5 nanowires, photode-
tectors based on n =​ 2–4 perovskite nanowires manifest strikingly 
lower noise currents, which is in good accordance with their low 
dark currents. To evaluate the average responsivities and detec-
tivities of each device, we assessed the statistics of device perfor-
mance by measuring frequency-modulated photocurrents under 
their lowest achievable irradiances from 10 different devices 
(Supplementary Fig. 27). The specific detectivity, D*, can be 
extracted using D* =​ R(AB)1/2/inoise, where A is the operating area of 
the device, B the bandwidth and inoise the noise current. The detec-
tivities are calculated by taking the responsivities and noise cur-
rents modulated at 10 and 30 Hz (Fig. 3g,h). The n =​ 4 perovskite 
nanowires present high average responsivities of (1.53 ±​ 0.19) ×​ 104 
and (1.51 ±​ 0.21) ×​ 104 A W−1, corresponding to detectivities of 
(4.68 ±​ 0.41) ×​ 1015 and (7.45 ±​ 0.66) ×​ 1015 jones (cm Hz1/2 W−1) at 
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free-carrier conduction and charge injection at crystalline edges. e, Temporal response of 1D arrays of layered perovskites with n =​ 2 and 4. f, Frequency-
dependent noise current at a voltage bias of 5 V. The noise current is dominated by 1/f noise at low frequency, which achieved the shot noise limit at 
around 100 Hz. The points correspond to average values of ten measurements on the same device for each 2D-perovskite nanowire, and the error bars 
represent the standard deviation. g,h, Statistics of responsivities and detectivities, respectively, of n =​ 2–5 nanowires under modulation frequencies 
of 10 Hz and 30 Hz. The average detectivity is (7.45 ±​ 0.66) ×​ 1015 jones for n =​ 4 perovskite nanowires at 30 Hz. Statistics for n =​ 2–5 perovskite 
photodetectors are calculated on the basis of 10 devices (Supplementary Fig. 27).
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modulation frequencies of 10 and 30 Hz, respectively. Due to the low 
noise and considerable photocurrents, the reproducible detectivity 
of (7.45 ±​ 0.66) ×​ 1015 jones represents record-high sensitivity for 
perovskite photodetectors (Supplementary Table 3). The detectivi-
ties of 2D-perovskite nanowires are two orders of magnitude higher 
than commercially available silicon photodiodes (Supplementary 
Table 3). Compared to the nanowire arrays, the thin films pres-
ent much lower photocurrents and responsivities (Supplementary  
Fig. 28), which can be attributed to carrier recombination and 
scattering at grain boundaries, thus highlighting the significance of 
fabricating high-quality single-crystalline structures.

Photocarrier dynamics
To gain insights into the photophysics of single-crystalline nanow-
ires of 2D perovskites, we monitored the energy transfer from 
excitons to free carriers by transient absorption (TA). In stark 
contrast to n =​ 2 nanowires with a single photobleaching (PB) 
peak (Fig. 4a, Supplementary Fig. 29), TA spectra of nanowires of 
n =​ 3–5 perovskites depict three resolvable PB peaks (Fig. 4b–d, 
Supplementary Fig. 29). The high-energy PB peaks on n =​ 3–5 
perovskite nanowires undergo a fast decay, while a broad low-energy 
PB peak (labelled as PB3) presents a slow decay and a continuous 
redshift to 1.6–1.7 eV, which signals the localization of photoexcited 
species from crystal interiors to layer edges. Figure 4e–h displays 
the kinetic traces of different PB inclusions on single-crystalline 
2D-perovskite nanowires. Ultrafast decay of PB1 and PB2 inclu-
sions presents fitted lifetimes of less than 5 ps for n =​ 3–5 perovskite 
nanowires, in accordance with the rapid rise of PB3 within 2 ps. The 
decay of PB1 and PB2 inclusions is completed within 100 ps, fol-
lowed by longer-lifetime carrier recombination at the low-energy 
layer-edge states (Fig. 4e–h, Supplementary Fig. 30, Supplementary 
Table 2). The essence of carriers was further identified by evaluating 
the evolution of reciprocal differential absorption (Δ​A−1) with delay 
time. According to the model established by Manser et al.35, Δ​A−1 is 
expected to be a linear function of delay time for the geminate free-
carrier recombination. The value of Δ​A−1 detected at low-energy 

photobleaching of n =​ 3–5 perovskite nanowires manifests a linear 
dependence on delay time (Supplementary Fig. 31), which is akin to 
the results on 3D CH3NH3PbI3 perovskite with a typical free-carrier 
nature (Supplementary Fig. 32), suggesting the effective dissocia-
tion of excitons at layer edges. The ultrafast dissociation of excitons 
to generate free carriers at layer edges is responsible for the high-
performance photodetectors.

Conclusions
We have demonstrated high-performance photodetectors with high 
responsivity, detectivity and speed by developing single-crystalline 
2D-perovskite nanowire arrays with a pure crystallographic orien-
tation. High average responsivities of 1.5 ×​ 104 A W−1, detectivities 
of more than 7 ×​ 1015 jones and response timed of around 25 μ​s have 
been integrated on a single device based on n =​ 4 perovskite nanow-
ires. Through the characterizations of crystal structure, photophys-
ics and device performance, we demonstrate that 2D-perovskite 
nanowires are promising photodetection materials, which combine 
insulating organic barriers for suppressing the dark currents and 
high-photoconductivity crystal edges for efficient exciton dissocia-
tion, free-carrier generation and transport.

Methods
Fabrication of 1D layered-perovskite single-crystal arrays. The layered-
perovskite crystals with different compositions were synthesized according to ref. 32. 
Topographical templates were prepared by reactive ion-etching and the asymmetric 
wettability was achieved through a selective modification process (Supplementary 
Note 1, Supplementary Figs. 1, 2). The capillary-bridge rise assembly system was 
constructed by contacting a topographical template and a flat substrate to the 
perovskite solution (schematic illustration in Supplementary Fig. 4). The detailed 
discussion and the lattice Boltzmann method simulation results are presented in 
Supplementary Figs. 5, 6 and Supplementary Note 2.

Characterizations. The morphology of 1D single-crystal arrays was 
characterized by SEM (Hitachi, S-4800, Japan). AFM topography was carried out 
on a Bruker MultiMode 8 Atomic Force Microscope. The TEM characterizations 
were performed on a FEI Tecnai G20 operating at an accelerating voltage of 
100 kV. X-ray diffraction of 1D arrays and powders of layered perovskites 
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Fig. 4 | Transient absorption for 2D-perovskite single-crystalline nanowire arrays. a–d, Pseudocolour transient absorption (TA) spectra of n =​ 2 (a), n =​ 3 
(b), n =​ 4 (c) and n =​ 5 (d) perovskite nanowires. For n =​ 2, a photobleaching at PB-n2 (2.206 eV) dominates the TA spectra. For n =​ 3 to 5, time-dependent 
TA spectra exhibit a cascade energy transfer from higher-energy states to lower-energy states. e–h, Kinetics traces of nanowire arrays of 2D perovskites. 
The rise of lower-energy PB3 synchronized with the ultrafast decay of higher-energy PB1 and PB2 indicates energy transfer from excitons in crystal 
interiors to free carriers localized at layer edges.
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were measured on a Bruker D8 diffractometer with monochromatized Cu Kα 
radiation (λ​ =​ 1.5406 Å). The GIWAXS patterns were collected on the Beijing 
Synchrotron Radiation Facility with an incidence angle of 0.2o. The indexing 
of the GIWAXS diffraction spots was carried out on GIXSGUI36 using lattice 
parameters of layered perovskites from ref. 32. The steady-state optical absorption 
was characterized on a Shimadzu UV-3600 spectrometer. The power-dependent 
PL emission was performed on an optical microscope equipped with a ×​50, 
0.9 numerical aperture (NA) objective and a 514-nm continuous-wave laser as 
excitation source. The laser beam size was optimized to a beam waist of around 
5 μ​m to uniformly excite the nanowires. The excitation power was tuned by a 
neutral density filter (Thorlabs, NDC-50C-4M) and calibrated by an optical 
power meter (Thorlabs, PM100D).

Photodetector characterizations. For photodetection measurements, the 
2D-perovskite single-crystalline nanowire arrays were fabricated from 5 mg ml−1 
precursor solutions and micropillars in 2-μ​m width on 300-nm SiO2/Si substrates. 
Cr/Au (10 nm/100 nm) was evaporated onto these 1D arrays as electrodes using 
a shadow mask. The channel length and width were controlled at 10 μ​m and 
40 μ​m, respectively. The active area of device is around 10 ×​ 2.5 μ​m2 for 4–5 
nanowires covered by a pair of electrodes. The I–V measurements were performed 
using a Keithley 4200 semiconductor characterization system and a manual 
probe station (Lake Shore) in a vacuum of 10−5 torr at room temperature. The 
responsivity and detectivity were measured under frequency modulation. A 530-
nm light-emitting diode (LED) (Thorlabs M530L3) was modulated by a function 
generator (Tektronix AFG1062) to illuminate the device. The light irradiance 
was controlled by a LED controller (Thorlabs DC2200) and calibrated by means 
of a silicon photodiode (Thorlabs, S130C). The device was connected in series 
with a 2-kΩ​ load resistor and a 5-V bias was applied by a Keithley 4200. The 
photocurrent was recorded by measuring the voltage across the resistor by means 
of a lock-in amplifier (Stanford Research Systems, SR830). The temporal response 
measurements were performed on a digital oscilloscope (Tektronix DPO 4104) 
under a 5-V bias. The noise currents of photodetectors were characterized with a 
lock-in amplifier (SR830) under darkness.

Femtosecond transient absorption spectroscopy. A Ti:sapphire femtosecond 
laser system provided laser pulses for the femtosecond transient absorption 
measurements. A regenerative amplifier (Spectra Physics, Spitifire) seeded with a 
mode-locked Ti:sapphire laser (Spectra Physics, Tsunami) delivered laser pulses at 
800 nm (120 fs, 1 kHz), which were then divided into two components by means 
of a 9:1 beam splitter. The major component was sent to an optical parametric 
amplifier (Spectra Physics, OPA-800CF) to generate the pump pulses (400 nm 
130 fs, 1 kHz). The minor component was further attenuated and focused into a 
3-mm sapphire plate to generate the probe pulses. A bandpass filter (SPF-750, CVI) 
was inserted into the probe beam to select the visible probe (420–750 nm). The 
time delay between the pump and probe beams was regulated through a computer-
controlled motorized translation stage in the pump beam. A magic scheme 
was adopted in the pump–probe measurement when necessary. The temporal 
resolution between the pump and the probe pulses was determined to be ∼​150 fs 
(full-width at half-maximum). The transmitted light was detected by a CMOS 
linear image sensor (S8377-512Q, Hamamatsu). The excitation pulsed energy was 
~50 nJ as measured at the sample site. Analysis of the kinetic traces derived from 
time-resolved spectra was performed individually and globally using nonlinear 
least-squares fitting to a general sum-of-exponentials function after deconvolution 
of the instrument response function (IRF). All the spectroscopic measurements 
were carried out at room temperature.
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