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Emergence of an enslaved phononic bandgap in a
non-equilibrium pseudo-crystal
Nicolas Bachelard1†, Chad Ropp1†, Marc Dubois1, Rongkuo Zhao1, YuanWang1,2 and Xiang Zhang1,2,3*

Material systems that reside far from thermodynamic equilibrium have the potential to exhibit dynamic properties and
behaviours resembling those of living organisms. Here we realize a non-equilibrium material characterized by a bandgap
whose edge is enslaved to the wavelength of an external coherent drive. The structure dynamically self-assembles into
an unconventional pseudo-crystal geometry that equally distributes momentum across elements. The emergent bandgap is
bestowed with lifelike properties, such as the ability to self-heal to perturbations and adapt to sudden changes in the drive.
We derive an exact analytical solution for both the spatial organization and the bandgap features, revealing the mechanism for
enslavement. This work presents a framework for conceiving lifelike non-equilibrium materials and emphasizes the potential
for the dynamic imprinting of material properties through external degrees of freedom.

Materials in nature spontaneously form through micro-
scopic and collective interactions. This self-organization
process is often a source of wonder and a catalyst for scien-

tific inspiration. By understanding crystal growth, people have been
able to artificially synthesize materials with high purity1, and sub-
sequently invent new composite2,3 and crystalline forms4–6. Crystals
are examples of the rigid structures that form by static self-assembly,
the process through which order arises in an equilibrium state7.
Still, nature shows us that order can arise far from thermodynamic
equilibrium, as seen in living cells8, the swarming and flocking
of animals9–12, and even weather patterns13. These systems arise
and are sustained outside of thermodynamic equilibrium through
the collective dissipation of energy (that is, irreversible loss)14
in a process known as dynamic self-assembly. Remarkably, this
self-sustaining process produces structures exhibiting lifelike be-
haviours15, such as the ability to self-heal16, self-adapt to changes in
the environment17–19, and self-replicate20—with features that might
evolve linked to dissipative history21,22. Non-equilibrium materials,
therefore, provide a foundation for creating artificial systems that
are inspired by nature and mimic living organisms23–29.

Materials research is ultimately devoted to the study of physical
properties. For materials that reside in thermodynamic equilib-
rium, macroscopic properties often result from the microscopic
organization (for example, photonic bandgaps in opals30,31) or the
properties of the microscopic elements (for example, resonance-
based phononic bandgaps32,33). The question arises whether these
properties can be imprinted directly into a material without requir-
ing the systematic engineering of thematerial’smicroscopic features.
Towards this end, non-equilibriummaterials can provide a solution.
Non-equilibrium systems are inherently open to their environment
and the necessary input of energy offers a route for the externalmod-
ification of material responses. This open channel has been utilized
to tune the geometry of non-equilibrium structures, for example by
changing the flow rate34 or frequency17–19,28,35 of the drive. However,
beyond the tuning of geometry, exploiting this channel to dynami-
cally imprint physical properties into non-equilibrium materials has
never been investigated. Such ability could enable external degrees

of freedom to direct self-organization and simultaneously encode
macroscopic properties.

In this article, we report the first demonstration of a non-
equilibrium material with an emergent Bragg-type bandgap that
is enslaved to the wavelength of an external coherent source.
The system consists of an array of scattering particles sitting in
a viscous liquid and confined within a one-dimensional single-
modewaveguide. These particles dynamically self-assemble towards
a configuration that equally distributes momentum along the
structure. The resulting order corresponds to an unconventional
pseudo-crystal exhibiting a phononic bandgap, whose band edge
is enslaved to the wavelength of the acoustic source. The structure
resides far from equilibrium, reaching a steady state that moves
forward in time and constantly dissipates the particles’ kinetic
energy. Remarkably, the lifelike behaviours often observed in non-
equilibrium structures are here bestowed to the emergent bandgap
itself. This is manifested in its ability to self-heal to mechanical
perturbations and self-adapt to changes in the drive wavelength.
Seldom achieved for non-equilibrium systems36, we are able to
derive an exact analytical solution for the non-equilibrium steady
state. This solution is confirmed experimentally and emphasizes the
central role of wave coherence in bandgap enslavement. In addition,
our design offers the ability to investigate the transient process
of dynamic self-assembly, from which we experimentally confirm
dynamic attraction and subsequent phase-space collapse. Finally, we
stress that our analytic solution is completely general and applicable
to any classical wave system.

Emergence of an enslaved bandgap
Our experiment consists of a single-mode acoustic waveguide
filled with 12 mobile particles that sit in the meniscus of a
viscous liquid (see Methods). These particles are put in motion
by the continuous acoustic pressure exerted by a coherent and
unidirectional drive field (Fig. 1a). The system dynamically self-
assembles into a non-equilibrium structure, which coincides
with the emergence of a phononic bandgap with its higher-
wavelength band edge enslaved to λ0, the wavelength of the source
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Figure 1 | Bandgap emergence in a non-equilibriummaterial. a, Schematic showing a single-mode waveguide filled with mobile scattering particles in a
viscous liquid. The particles move along the x-direction in response to a coherent field, wavelength λ0, incident from the left. The red column vectors
indicate the forward and backward propagating field intensities across the structure, where RS is the reflection coe�cient and TS is the transmission
coe�cient. b, Time evolution of a transmission spectrum showing bandgap emergence. Curves correspond to spectra taken at t=0, 5, 10, 20 and 30 min
(black to red). c, Bandgap self-healing to a mechanical perturbation, perturbed at t=25 min. Spectra are taken before (black), immediately after (dark red),
and following self-healing (red). d, Bandgap self-adapting to changes in the external drive wavelength. Spectra are taken when the drive wavelength is
λ0 (black), 0.9λ0 (dark blue), and returned to λ0 (red). The drive is initially switched to 0.9λ0 at t= 18 min, then switched back to λ0 at t=42 min.

(Fig. 1b and Supplementary Movie 1). This bandgap is Bragg-
like and arises through the collective interferences between the
sub-wavelength scatterers. At t = 0 the source is turned on and
the particles begin to move in various directions. Eventually,
they self-organize into a mechanical steady state—the separations
between particles become fixed, while the assembly collectively
moves forward in time. Since the kinetic energy of this collective
motion is continuously dissipated through viscous friction, our
steady state never reaches thermodynamic equilibrium. In addition
to ensuring non-equilibrium operation, the viscosity stabilizes
the steady state by enforcing overdamped particle motion (see
Methods). Remarkably, the enslaved bandgap emerges regardless of
the initial placement of the particles, even when the steady state is
organized differently (Supplementary Fig. 1).

The emerging bandgap exhibits several lifelike behaviours—
it self-heals to mechanical perturbations (Fig. 1c and Supple-
mentary Movie 2) and re-emerges at different wavelengths in
response to sudden changes in the drive (Fig. 1d and Supple-
mentary Movie 3). Although geometric structures arising through
dynamic self-assembly often exhibit self-healing and self-adaptive
characteristics15, here these lifelike properties are readily bestowed
to the bandgap feature itself.

Pseudo-crystal formation
The mechanisms that govern the dynamic self-assembly in our
system are revealed by monitoring the trajectories of individual
particles (see Methods for experimental details). During self-
assembly, the velocities of the individual particles evolve such that
the total kinetic energy of the ensemble increases during the initial
assembly and relaxes as the system approaches its steady-state
organization (Supplementary Fig. 2). In contrast to conventional
Bragg-type bandgap materials emerging from crystalline order37,
our structure appears pseudo-crystalline as a consequence of
the coherent and equal distribution of momentum amongst the
particles (Fig. 2). To better visualize this pseudo-crystalline order,
we track the particles’ positions during the self-assembly process
and decompose their centre-to-centre distance as xn − xn−1 =
DS+ pnλ0/2+ dn, where DS is the width of each particle, pn is a
distribution of positive integers, and dn is the residual separation
between particles, modulo λ0/2. In this definition, n∈[1,N ] for xn,
while n∈[2,N ] for pn and dn, where N is the number of particles.

The system evolves towards a non-equilibrium steady state with
a non-uniform pn distribution, which describes the pseudo-crystal
geometry (Fig. 2a). This geometry fulfils the phase requirement

imposed by the coherent field, producing the bandgap response.
Self-organization is mediated by the feedback between particle
motion and wave scattering. The coherent field exerts acoustic
pressure on the particles, whose motion in turn modifies the scat-
tered field. Particle interactions are thus mediated by the field,
whose intensity interferences are unchanged by additional pnλ0/2
separations. The preservation of λ0-coherence is confirmed exper-
imentally by the π-phase degeneracy observed in our structure.
Depending on the initial configuration, any distribution of pn can
be reached (Supplementary Fig. 1), indicating that our system can
self-assemble into many equivalent pseudo-crystalline geometries
with similar bandgap responses.While dynamic self-assembly com-
monly arises through hydrodynamic interactions17,19,25,27,28,34, here
the assembly is entirely mediated by the coherent field, which
produces multiple interaction length scales depending on pn. Since
particles are only weakly absorbing (seeMethods), and our system is
confined into a single waveguide mode, the coherence is preserved
along the structure. By preserving mode coherence, our system
is in contrast to other wave-based approaches for self-assembly,
such as optical binding38. These approaches utilize scattering into
multiple spatial modes to produce long-distance coupling between
particles39,40, but as a result lose the spatial coherence required for
bandgap emergence.

The time evolution of our system is characterized by the attrac-
tion towards a configuration with a nearly constant, but mono-
tonically decreasing residual spacing, dn (Fig. 2b and inset). This
organization is in further contrast to conventional bandgap crystals
that, being periodic, would have a constant dn. The asymmetry
observed in dn originates from the open boundary conditions and
the unidirectional transfer of momentum from the source to the
ensemble, which produces the overall one-way motion. This asym-
metry is also observed in the evolution of dn, as displayed by the
slower temporal response and pronounced oscillations for larger n
(Supplementary Fig. 3). Snapshots of dn at different times also reveal
the connection between particle order and bandgap self-healing and
self-adaptability. Self-healing of the bandgap coincides with self-
healing of dn (Fig. 2c and Supplementary Fig. 4), while bandgap
emergence at different wavelengths is reflected by an overall shift
in dn (Fig. 2d and Supplementary Fig. 5).

Theoretical description of the emergent bandgap
At steady state the system self-organizes into a pseudo-crystalline
geometry that equally distributes momentum across all particles.
In our theoretical model, we consider lossless scatterers and a
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one-dimensional geometry, which maintains the spatiotemporal
coherence of the drive field throughout multiple scattering events.
Losses can be taken into account numerically (see Methods), show-
ing similar pseudo-crystal self-assembly (Supplementary Fig. 6).
Wave coherence enforces a steady-state condition inwhich each par-
ticle experiences the same pressure force, FS=2R/(1+ (N−1)R)
(see Methods), where R is the reflection coefficient in intensity for
an individual particle. Since the velocity of the particles at steady
state is proportional to FS, the ensemble speed decreases with the
number of particles. Uniformmomentum transfer is achieved when
the average field intensity, 〈In〉, between particle n−1 and n, decays
according to the arithmetic progression (Fig. 3a,b):

〈In〉=1+FS

(N
2
+ (1−n)

)
, ∀n∈[2,N ] (1)

where the difference in average intensity across each particle, FS,
defines the pressure force. The intensity distribution of equation (1)
requires a collective phase organization described by:

Ψn+Φs = π−
1
2
asin

(√
1+ (N−n)R
1+ (N−n)

)

−
1
2
asin

(
R

√
1+ (N−n)
1+ (N−n)R

)
(2)

where Ψn= 2πdn/λ0, Φs is the phase accumulated from crossing
a particle, and the residual phase, Ψn+Φs, is defined modulo π
(inset of Fig. 3a). The full derivations of equations (1) and (2) are
provided in the Supplementary Information. Equation (2) describes
a monotonically decreasing trend (Fig. 3c), which agrees well with
the experimental data when R= 0.04 (see Methods). Remarkably,
the phase distribution in equation (2) depends only on R and
the difference N − n, confirming that the residual phase between
particles is locked and the dn are strictly bound to λ0. In addition, by
allowing a π-ambiguity in the total phaseΦn+Φs=Ψn+Φs+pnπ
(inset of Fig. 3a), equation (2) also confirms the pseudo-crystal
organization observed in Fig. 2. Importantly, equation (2) is well
defined for 0< R< 1 and n≤N , which stresses the existence of
solutions for all experimental conditions.

The phase-locked organization described by equation (2)
produces an unconventional bandgap material, whose higher-
wavelength edge is enslaved to λ0 and whose lower edge expands
to lower wavelengths with an increasing R (Fig. 3d). This
bandgap feature matches remarkably well with the experimentally
observed bandgap for R = 0.04. Bandgap enslavement at λ0
can be understood by considering long systems (N→∞) and
particles close to the source, which simplifies the residual phase:
Ψn+Φs→π−asin(

√
R). We assume that the non-uniform pn

can be described by a random variable with a median p̄ and a
standard deviation σp (Fig. 3e and inset), such that the total phase
reads Φn+Φs→ (p̄+1)π−asin(

√
R). Using an effective Bloch

crystal description, we obtain the location of the band edges (see
Supplementary Information):

λ+=λ0

λ−=λ0
(p̄+1)π−asin(

√
R)

(p̄+1)π+asin(
√
R)

(3)

where the higher-wavelength edge, λ+, is enslaved to the drive wave-
length independent of all other system parameters. Equation (3)
is valid for large dispersions in pn (Fig. 3f). Despite increasing
randomness in pn, transmission curves with the same p̄ emerge with
similar bandgaps (Supplementary Fig. 1). The accuracy of equa-
tion (3) is confirmed by the full-width at half-maximum measured
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Figure 2 | Pseudo-crystal formation. a, Raw data showing the trajectory of
the particle positions over time (black lines). The particles are initially
regularly spaced by 12.5 cm along the waveguide and subsequently
self-organize into a pseudo-crystal. The coloured regions label the dn and
the dashed lines separate the di�erent pnλ0/2. b, Plot of dn as a function of
time. Colours correspond to the regions labelled in a. The inset plots dn at
steady state (t=30 min). c, Plot of dn for the self-healing data set of Fig. 1c
with corresponding colours. These data show the dn organization before
(dashed black curve, t=20 min), immediately after (dark red curve,
t=26 min), and self-healed from (red curve, t=30 min) perturbation.
d, Plot of dn for the self-adaptation data set of Fig. 1d with corresponding
colours. These data show the dn organization with the source driven initially
at λ0 (dashed black curve, t= 15 min), after switching to 0.9λ0 (dark blue
curve, t=30 min), and after returning to λ0 (red curve, t=70 min).

from experiment (0.07λ0), which is close to the value obtained from
equation (3) (λ+−λ−=0.06λ0) withR=0.04 and p̄=1. Band-edge
enslavement to the drive also ensures that functionally equivalent
bandgaps emerge even after large perturbations that may change
pn, but keep p̄ constant. Changes in p̄, however, will result only in
wider or narrower bandgaps, while λ+ remains locked to λ0. A qual-
itative understanding of band-edge enslavement can be obtained by
considering the Bloch crystal description for infinite systems with
uniform pn. Here, the linear decrease in intensity along the length
of the structure derived in equation (1) corresponds to an infinitely
long exponential decay, which must occur at the higher-wavelength
band-edge transition between propagating and evanescent waves
(see Supplementary Information).

Phase-space attraction during dynamic self-assembly
We consider several benchmark cases consisting of N=3 particles
with varied initial conditions to investigate transient behaviour. The
transient processes are revealed by the progression in the position
(x) and momentum (p) phase-space41, which in our system is
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particle (obtained using a 20 s running average) measured experimentally as a function of time (colours and labels correspond with the inset of a). Each
particle in all data sets (the colliding data set excluded) are shown converging to a common steady-state velocity.

equivalent to studying [Φi(t), vj(t)] for i in {1, 2} and j in {1, 3}.
The particles’ trajectories are attracted in position-space to steady
states that are identical to equation (2) and in momentum-space

to velocities that are uniform (Fig. 4). We find that experimental
trajectories closely follow the numerical model (see Methods).
The observation of these position and momentum-space attractors
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emphasizes the collapse of the system phase-space, which is a
signature of dynamic self-assembly15.

These attractors support the continuous attraction towards
steady state and ultimately bestow our system with the robust self-
healing and self-adaptive properties observed in experiment. Each
of these non-equilibrium steady states are fed by their own basins of
attraction, which are asymmetric, but periodic in position-space as
anticipated by the spatial degeneracies observed in Fig. 2. The basins
of attraction fill the position phase-space, ensuring the emergence
of functionally similar bandgap structures, regardless of the initial
placement or any perturbation of the system. This robust behaviour
is maintained as long as the separations between particles do not
become so close that their attractors require them to cross one
another (grey region in Fig. 4a). Although we probe the phase-
space response using three particles, similar dynamics occur at
higher dimensions.

Conclusion
In this work, we demonstrated an approach for realizing bandgap
materials that reside far from equilibrium and emerge enslaved to
an external drive. Our system self-organizes into an unconventional
pseudo-crystal geometry through coherent-momentum sharing. In
contrast to approaches using static self-assembly42 or top-down
fabrication43 that typically result in rigid structures with fixed
properties, dynamic self-assembly enables the creation of lifelike
structures with dynamically imprinted properties. We observed the
emergence of a phononic bandgap with the ability to self-heal
and spontaneously self-adapt to changes in the source wavelength.
Despite the existence of many spatial attractors, our system always
self-organizes to forma transmission bandgap enslaved at its higher-
wavelength edge to the wavelength of the drive. Since our system
relies on wave interferences, our approach could be extended to
other wave systems (for example, electromagnetic) to produce
bandgap materials at different length scales.

Although dynamic self-assembly has been studied for decades,
its underlying principles are only partially understood and, in par-
ticular, the role of entropy production in the emergence of order far
from equilibrium is still debated14,44–46. Resolving such uncertainties
is made particularly challenging due to the scarcity of physical
systems that are both complex enough to self-organize outside of
equilibrium and simple enough to be described analytically36. By
solving the non-equilibrium steady-state order for an arbitrarily
large number of individual elements, our work presents an ideal
platform for the investigation of these unresolved theoretical issues.
Finally, our demonstration of emergent phenomena through wave-
based interactions illustrates a path for developing non-equilibrium
materials with lifelike properties that would be difficult to achieve
through static means. Such an approach could ultimately lead to the
development of artificial self-replicating and evolving systems47,48
for the creation of synthetic living materials49 as well as collec-
tive matter displaying non-algorithmic intelligence for human-like
decision making50.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Methods
Acoustic set-up. The acoustic waveguide consists of a 2-m-long, 2.2-cm-diameter
transparent acrylic tube with funnel-shaped input and output (Supplementary
Fig. 7). Twenty-cm-long ramps made out of PDMS are constructed inside the
waveguide to hold a 5-mm-deep pool of viscous liquid (50% glycerin–water
solution with 0.125wt% Tween-20 surfactant). The ramps are designed to
adiabatically shrink the waveguide mode and to hold the liquid pool. The acoustic
source consists of off-the-shelf computer speakers, with maximum output power of
93 dB, that are controlled through Matlab code. In all the experiments we use a
3.9 kHz frequency to drive self-assembly, except in the reconfigurability data sets
shown in Figs 1d and 2d where we switch between 3.9 kHz and 4.3 kHz, which are
two frequencies located near peaks of the speaker’s emission spectrum
(Supplementary Fig. 8). Transmission spectra are acquired by periodically
sending a frequency-chirped probe, which we register using a microphone at the
end of the waveguide. Before each experiment, we obtain an empty waveguide
spectrum and use it to normalize the transmission spectrum obtained during
self-assembly. To improve the system performance, the output funnel of our
waveguide is fitted with cotton to absorb the transmitted acoustic waves and
prevent any unwanted reflections that would create stationary-wave patterns.
Supplementary Fig. 9 shows the smooth trajectory of a single particle that is
pushed along the whole length of the waveguide, illustrating that there is no
stationary-wave pattern. This trajectory also demonstrates that transmission loss is
minimal for our waveguide. A small amount of absorbing cotton is also introduced
at the speaker input to avoid Fabry–Perot resonances due to interference between
the ensemble and the speaker facet (Supplementary Fig. 10) that may appear in the
transmission spectra.

Meniscus particles. Scattering particles are made from plastic straws that are cut to
10mm in height and elongated into 8×12mm elliptic cylinders, DS=12mm.
These cylinders are glued to a 9×15mm piece of rigid plastic and sealed with glue
to a fitted piece of plastic on top. We glue a 5mm steel rod on top of the particles,
enabling magnetic loading and placement along the waveguide. A photograph of a
particle is shown in Supplementary Fig. 11. These particles behave as
sub-wavelength scatterers with respect to the drive (wavelength of 88mm), which
prevents the occurrence of resonant effects. We estimate the particle absorption to
be 1% by fitting the transmission spectrum of a 12-particle self-assembled system
to a numeric model that includes absorption (Supplementary Fig. 12). COMSOL
modelling indicates that the particle reflection coefficient is approximately 4%. In
experiments, we characterize all of the particles speeds in an empty waveguide and
choose a set of particles with similar speeds to perform the self-assembly. For the
data sets in Figs 1 and 2, the 12 particles have speeds of [9.5, 9.8, 10.2, 10.3, 9.8, 9.6,
9.4, 10.8, 9.2, 10.0, 9.8, 10.1] cmmin−1. For the data sets in Fig. 4, the three particles
chosen have speeds of [8.7, 8.6, 8.8] cmmin−1. Particles are loaded into the

waveguide in the order listed and we monitor their positions using a webcam
combined with a subpixel detection technique. We are required to compensate for
particle inhomogeneity in Fig. 4a to match the locations of the attractors. We offset
D2(t) and D3(t) by 5% and 2% of λ0, respectively.

Theory. The system is composed of N scattering particles sharing the same
reflection coefficient in intensity, R, and distributed along the waveguide (Fig. 1a).
The mass of the particles are assumed very small, and thus inertial effects are
neglected. While the kinetic energy of the particles is smaller than the absorbed
wave energy, this absorption produces a negligible increase in temperature. The
kinetics of our system is driven entirely by the transfer of wave momentum due to
scattering. For a single particle, the wave pressure force is proportional to 2R+A,
where A/2R=1/8�1. Thus, the contribution of absorption to wave scattering
is negligible and we assume the particle to be lossless. Therefore, each
particle satisfies:

m
d2xn
dt 2
=−γ vn+F n≈0 (4)

wherem, xn, γ , vn and Fn are the mass, position, viscous damping, velocity, and
pressure force associated with the nth particle, respectively. The acoustic field is
spatially confined to a single mode, which allows us to describe the scattering
through a transfer matrix (TM) approach. Between particles n−1 and n we note
An, In, andΦn as the field, intensity, and accumulated phase, respectively (see
Supplementary Information). Using the TM formalism, the complex field and the
intensity are respectively decomposed into a forward and a backward component,
[A+n ,A

−

n ]
T and [I+n , I−n ]

T . At steady state the intensities at both extremities read
I1=[1,RS] and IN+1=[TS, 0] (see Fig. 1a), where RS is the reflection coefficient in
intensity of the whole structure and TS the corresponding coefficient in
transmission. The pressure force exerted on the particles is responsible for a drop in
average intensity across each particle, which is derived as
Fn=〈In〉−〈In+1〉=|A+n |

2
+|A−n |

2
− (|A+n+1|

2
+|A−n+1|

2).

Numerical modelling. The scattering properties of our particle–waveguide system
are simulated in 3D with COMSOL software to extract the intensity reflection
coefficient R=4% with our geometry. The temporal evolution of our system is
numerically investigated using a TM approach that includes the effects of particle
absorption (Supplementary Fig. 6). For a given organization of the particles, we
obtain the field using the TMmodel. The resulting forces on individual particles
are then derived and the new positions are obtained from Newton’s equation,
neglecting inertial effects.

Data availability. The data that support the findings of this paper are available
from the corresponding author on request.
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