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ABSTRACT: Self-assembly via nanoscale phase separation
offers an elegant route to fabricate nanocomposites with
physical properties unattainable in single-component systems.
One important class of nanocomposites are optical meta-
materials which exhibit exotic properties and lead to
opportunities for agile control of light propagation. Such
metamaterials are typically fabricated via expensive and hard-
to-scale top-down processes requiring precise integration of
dissimilar materials. In turn, there is a need for alternative,
more efficient routes to fabricate large-scale metamaterials for
practical applications with deep-subwavelength resolution.
Here, we demonstrate a bottom-up approach to fabricate scalable nanostructured metamaterials via spinodal
decomposition. To demonstrate the potential of such an approach, we leverage the innate spinodal decomposition of
the VO2−TiO2 system, the metal-to-insulator transition in VO2, and thin-film epitaxy, to produce self-organized
nanostructures with coherent interfaces and a structural unit cell down to 15 nm (tunable between horizontally and
vertically aligned lamellae) wherein the iso-frequency surface is temperature-tunable from elliptic to hyperbolic dispersion
producing metamaterial behavior. These results provide an efficient route for the fabrication of nanostructured
metamaterials and other nanocomposites for desired functionalities.
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Next-generation optoelectronic applications require
diverse and nanoscale materials in complex geo-
metries to achieve desired functionalities. For

example, metamaterials, which are artificial composites with
structural unit cells much smaller than the wavelength of light,1

are poised to impact such optoelectronic applications.
Metamaterials leverage a complex mixture of properties in
specific geometries to realize exotic optical properties, including
negative refraction,2 optical magnetism,3 and hyperbolic
dispersion,4 which could enable a plethora of exciting
applications such as subwavelength imaging5 and invisibility
cloaking.6 Such applications require large-scale or even three-
dimensional bulk metamaterials.7 To achieve deep-subwave-
length-scale features, multilayer deposition,8,9 nanoimprint-
ing,10 and layer-by-layer lithography techniques11 have been
explored to fabricate three-dimensional metamaterials. Rough-

ness induced at each interface in these techniques is, however,
accumulated, thus exacerbating scattering loss.12 To date, most
metamaterials are based on metal-dielectric composite
structures which, in turn, presents considerable materials (e.g.,
typical metals such as silver that are used have limited tunability
of their optical responses) and fabrication (e.g., production of
continuous, high-quality sub-20 nm thick metal films in
intimate contact with ceramic or semiconducting dielectric
layers is difficult) challenges. As a result, an open challenge is
the production of tunable metamaterials operating in the visible
and near-infrared wavelength regimes since this requires the
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fabrication of nanostructures with sharp interfaces and
periodicities on the order of a few tens of nanometers over
macroscopic areas.7,12

At the same time, the study of nanoscale phase separation
has advanced rapidly because the resulting self-organized
nanocomposites can exhibit a variety of coupled function-
alities.13 In recent years, considerable effort has focused on self-
assembled oxide nanocomposites and their potential applica-
tions in nanoelectronic devices.14−17 Similar bottom-up, self-
assembly techniques, such as electrochemically grown metal
wire arrays,18 block copolymer self-assembly,19 DNA-mediated
self-assembly of nanoparticles,20 feedback-driven self-assem-
bly,21 and one-step pulsed-laser deposition,22 have been
explored for the fabrication of metamaterials. Most of these
self-assembly approaches are, however, either template-assisted
methods are complicated and require additional post-
processing steps, such as etching and metal deposition, or
solution-based approaches which are not compatible with
semiconductor integration procedures. More recently, self-
assembly of eutectic structures has been explored to fabricate
metamaterials, but the resulting length scales are >200 nm and
all the components are limited to dielectric materials, thus
limiting their utility.23,24 Self-assembly via spinodal decom-
position, however, could offer an innovative route to scalable
fabrication of metamaterials as well as controlled structural
features at the nanoscale.13,25 Spinodal decomposition is a
phase-separation process whereby a material spontaneously
separates into two phases with distinct compositions.26,27

Unlike conventional phase separation, which occurs via
nucleation and growth, spinodal decomposition does not
require nucleation and is solely determined by diffusion,
leading to the spontaneous formation of structures with
compositional fluctuations on the nanometer length scale.28,29

Furthermore, since spinodal decomposition is a continuous
process, the interfaces between the two separated phases
remain coherent,30 which could effectively reduce light
scattering in optical structures. Spinodal decomposition is a
ubiquitous phenomenon occurring in a diverse set of systems
including metal alloys,27 oxides,28,31 semiconductors,32 and
polymers33 which could provide for a range of material choices
for optical applications. All told, these characteristics provide a
number of potential advantages for the fabrication of self-
assembled nanocomposite metamaterials and other multifunc-
tional applications.
Here, we demonstrate a simple bottom-up approach to

create self-assembled, nanostructured metamaterials with

controllable structural geometry (i.e., horizontally or vertically
aligned lamellae) and temperature-tunable optical response
from spinodally decomposed VO2−TiO2 epitaxial thin films.
The VO2−TiO2 system was explored for several reasons: (1)
the system is known to exhibit a spinodal instability;34 (2) the
component materials have vastly different optical properties,
making it potentially interesting from a metamaterial stand-
point; and (3) the well-known metal-to-insulator transition in
VO2 has been widely studied and gives rise to optical
tunability.35−37 To date, what little work exists on VO2-based
metamaterials has focused on single-layer VO2 as a tunable
substrate for patterned antennas and, as a result of the relatively
weak coupling/interaction, has demonstrated limited utility and
tunability.38,39 In our work, as-grown solid-solution films are
driven to phase separate upon postannealing, and we
demonstrate the ability to deterministically create horizontally
or vertically aligned lamellae consisting of Ti- and V-rich phases
depending on the substrate orientation wherein the composi-
tion modulation is always along the elastically soft [001]S
(where S refers to the substrate reference frame). These
lamellae have coherent interfaces and characteristic length
scales as small as ∼15 nm, smaller than what can be achieved
via conventional top-down methods. In turn, by taking
advantage of the metal-to-insulator phase transition that occurs
in the V-rich phase (similar to that in VO2) just above room
temperature, the optical iso-frequency surface of the self-
assembled nanostructures can be made to exhibit a temper-
ature-tunable transition from elliptic to hyperbolic dispersion in
the near-infrared range and thus the formation of hyperbolic
metamaterial response.

RESULTS AND DISCUSSION

To begin, the pseudobinary phase diagram for the VO2−TiO2
system reveals complete solid solubility and a tetragonal, rutile
structure at high temperatures, but upon transitioning below
∼830 K, a spinodal instability gives rise to a miscibility gap
centered about a composition of ∼35 mol % of Ti (Figure
1a).34 Spinodal instabilities are not rare in materials, but most
systems consist of two phases with similar crystal structure and
physical properties,28,29,31,40 thus making the functional proper-
ties of many spinodally decomposed systems rather mundane.
In VO2−TiO2, however, the VO2 is a correlated electron
system that undergoes a phase transition near room temper-
ature from a high-temperature metallic tetragonal (rutile) phase
to a low-temperature insulating monoclinic phase.35 Associated
with this transition is a dramatic change in the electronic

Figure 1. VO2−TiO2 spinodal system. (a) Phase diagram of the VO2−TiO2 system. Adapted from ref 34. Copyright 2013 American Chemical
Society. (b) Temperature dependence of the resistivity of a ∼70 nm VO2/TiO2 (001) heterostructure wherein the VO2 exhibits a sharp metal-
to-insulator transition with a 4 orders of magnitude change in resistivity at a transition temperature of ∼325 K. Insets show the monoclinic
(left) and rutile tetragonal (right) unit cells. (c) Real part of optical dielectric constants (ε′) of VO2 and TiO2 at 303 and 363 K. Of note is the
fact that ε′ for VO2 in the metallic state (363 K) is negative at wavelengths ≳1000 nm.
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conductivity as evidenced by the widely studied metal-to-
insulator transition (Figure 1b). At the same time, the optical
properties of VO2 also change dramatically. The optical
dielectric constants of VO2 films were probed at 303 and 363
K via spectroscopic ellipsometry, and the results were fit to
extract the optical dielectric constant (real (ε′) and imaginary
(ε″) components; details of the measurement and fitting are
provided in the Methods section). These studies show that the
room temperature, insulating, and monoclinic phase of VO2 has
a positive dielectric constant (from 600 to 1600 nm), but the
high-temperature, metallic, tetragonal phase exhibits a negative
dielectric constant for wavelengths ≳1000 nm (Figure 1c).
Note that for brevity, we show here only ε′, but ε″ was also
measured (Supporting Information, Figure S1a). The dramatic
differences in resistivity and optical constant between the
insulating and metallic phases of VO2 make it a potential
candidate for use in tunable plasmonic materials.36−38 On the
other hand, TiO2, which also exhibits a tetragonal rutile
structure near room temperature, is a wide band gap dielectric
which exhibits (essentially) temperature-independent positive
ε′ across the same temperature and wavelength regimes (Figure
1c and Supporting Information, Figure S1b).
To probe the potential for spinodal decomposition-driven

nanostructure formation in this system, we grew films from a
V0.6Ti0.4O2 target on rutile TiO2 (001) and (100) single-crystal
substrates by pulsed-laser deposition at 673 K (see Methods
section for details). Detailed structural analysis via X-ray
diffraction and transmission electron microscopy (TEM) reveal
that the as-grown V0.6Ti0.4O2/TiO2 (001) and (100)
heterostructures are fully epitaxial and single-phase solid
solutions (Supporting Information, Figure S2). The as-grown
heterostructures are likely stabilized as solid solutions due to
kinetic limitations in the nonequilibrium growth process (i.e.,
similar to quenching in bulk samples).34 This homogeneous
solid solution is, however, metastable and will decompose into
phase-separated structures given sufficient activation of the
diffusion process. In the current work, ex post facto annealing at
673 K was used to explore the phase evolution (Figure 2a,b).
Upon commencing the anneal, the as-grown, single-phase
V0.6Ti0.4O2/TiO2 (001) heterostructures (Figure 2a) quickly
start the decomposition process, and after ∼5 h, the diffraction
peak arising from the solid solution has become weaker,
broader, and has shifted to higher 2θ values (indicating a
reduction in the out-of-plane lattice parameter). At the same
time, two broad diffraction peaks, on either side of the solid-
solution peak, appear as an indication of the onset of phase

separation. The low- and high-angle diffraction peaks
correspond to Ti- and V-rich phases, respectively. Further
annealing (e.g., 24 h) results in a nearly complete loss of the
solid-solution peak and further growth of the satellite peaks,
consistent with what is expected for spinodal decomposition.40

On the other hand, even after annealing at 673 K for 24 h, the
V0.6Ti0.4O2/TiO2 (100) heterostructures (Figure 2b) are found
to exhibit only a single (slightly shifted) sharp peak. These
results suggest that the structural modulation in this case, if it
has occurred, does not align along the out-of-plane direction.
Reciprocal space mapping studies about the 301-diffraction
conditions of the film and substrate reveal the presence of
satellite peaks in the in-plane direction ([001]S), which
indicates a structural modulation with an average periodicity
of ∼17 nm along the [001]S (inset, Figure 2b and Supporting
Information, Figure S3). Further evidence of the compositional
and structural evolution of these heterostructures is obtained
from electronic transport measurements. From the phase
diagram (Figure 1a) at room temperature, the Ti-rich phase
should correspond to V0.35Ti0.65O2 and should exhibit
insulating, dielectric behavior while the V-rich phase corre-
sponds to V0.89Ti0.11O2 and should exhibit a metal-to-insulator
transition similar to that in VO2 wherein it behaves as a metal at
high temperature and as an insulating dielectric at room
temperature.34,41 Subsequent measurements reveal that the as-
grown, solid-solution heterostructures exhibit semiconducting
transport while the phase-separated heterostructures exhibit
sharp metal-to-insulator transitions (Figure 2c). This indicates
that the spinodal decomposition process creates a V-rich phase
which exhibits the expected metal-to-insulator transition albeit
reduced in magnitude compared to the pure VO2 because of
the Ti incorporation. This is consistent with prior studies42,43

which have shown that alloying Ti into VO2 gives rise to (1)
higher transition temperatures, (2) smaller magnitude changes
in resistance across the metal-to-insulator transition, and (3)
less hysteresis for the metal-to-insulator transition and has been
attributed to the added Ti distorting the VO6 octahedra in the
parent rutile structure. Such a reduced hysteresis width could
also increase the sensitivity of optical responses to temperature.
To further understand the structural evolution, bright-field

transmission electron microscopy (TEM) and high-angle
annular dark-field scanning transmission electron microscopy
(HAADF-STEM) studies were completed on the postannealed,
phase-separated films. Although a time evolution of the phase-
separation process is provided (Supporting Information, Figure
S4), here we focus on phase-separated films after 24 h of

Figure 2. Evolution of the spinodal nanostructures. X-ray diffraction of the evolution of the (a) (001)- and (b) (100)-oriented heterostructures
with annealing time at 673 K. The inset of (b) shows X-ray reciprocal spacing mapping of the annealed (100)-oriented heterostructure about
the 301 diffraction condition wherein satellite peaks with a periodicity of ∼17 nm are observed along the [001]S. (c) Temperature dependence
of the resistivity of the as-grown and spinodally decomposed films revealing that, upon phase separation, the heterostructures form a V-rich
phase with a strong metal-to-insulator transition.
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annealing to illustrate the final nanostructures that are obtained.
Low-magnification, cross-sectional imaging of the annealed
(001)-oriented heterostructures reveals fairly well-ordered,
horizontally layered nanostructures with periodicities of 15−
20 nm along the out-of-plane [001]S (Figure 3a). Low-
magnification, cross-sectional imaging of the annealed (100)-
oriented heterostructures confirms the presence of vertically
aligned nanostructures with periodicities of 15−20 nm along
the in-plane [001]S (Figure 3b). Plan-view imaging of the same
(100)-oriented heterostructures further reveals the long axes of
the lamellae running along the [010]S (Supporting Information,
Figure S5). Subsequent STEM-based energy-dispersive X-ray
spectroscopy studies reveal that the lamellae consist of V- (blue
regions, Figure 3c,d) and Ti-rich (green regions, Figure 3c,d)
phases with composition modulation along the [001]S. High-
resolution imaging near interfaces between the V- and Ti-rich
phases (Figure 3e,f) confirms the presence of (001)-type
interfaces and that the boundaries between the two phase-
separated constituents are coherentmeaning that despite a
rather large difference in lattice parameter, the interfaces remain
pristine at this atomic level with no obvious dislocations or
extended defects. Examination of fast Fourier transform (FFT)
patterns of the Ti-rich regions (top inset, Figure 3e) reveals
that the Ti-rich phase exhibits tetragonal structure while the V-
rich phase (bottom inset, Figure 3e) exhibits extra superlattice
spots indicative of the presence of a monoclinic distortion.41

The monoclinic nature of the V-rich phase was further
confirmed by selected area electron diffraction (SAED)
(inset, Figure 3b). The SAED pattern shows extra superlattice
spots in addition to the fundamental Bragg reflections which
are attributed to the monoclinic structure.44 No superlattice
spots are observed in the SAED pattern of as-grown, solid-
solution heterostructures (Supporting Information, Figure
S2h).

To summarize, at this point, we have demonstrated the
ability to produce self-assembled, quasi-periodic nanocomposite
thin films with coherent interfaces, controlled structural motifs
(i.e., horizontally and vertically aligned lamellae) and unit-cell
dimension of 15−20 nm. The unidirectional structural/
compositional modulation occurring along the [001]S is likely
due to the anisotropic elastic (strain) energy that works to
maintain coherency between the two resultant phases (note
that the misfit strain along the [100]S or [010]S is smaller than
that along the [001]S axis).41 Based on this interesting
structural and, in turn, electronic phase separation, we have
gone on to probe the optical properties of these phase-
separated nanostructures.
To investigate the potential of these nanostructures for

metamaterial behavior, the optical dielectric constants were
probed using spectroscopic ellipsometry (see Methods
section).45,46 For the as-grown, homogeneous, solid-solution
films, fittings were completed assuming isotropic response (i.e.,
ε[100] = ε[010] = ε[001], where ε[uvw] is the optical dielectric
constant along the [uvw] and is equal to ε′ + iε″). For
simplicity, we provide data for ε′ only in the main text, but data
for ε″ are also available (Supporting Information, Figure S6).
The resulting optical dielectric constant for the as-grown, solid
solution was found to be positive throughout the visible and
near-infrared wavelength regimes at all temperatures (blue
dashed line, Figure 4a−d), consistent with the observed
semiconducting behavior. For the phase-separated nanostruc-
tures, however, one can no longer assume that the
heterostructures are isotropic. Thus, for the (100)- and
(001)-oriented heterostructures, fittings were done assuming
uniaxial anisotropy wherein ε[100] = ε[010] ≠ ε[001] since the
structural and compositional modulation is always along the
[001]S. Measurements at 303 K, where both the V- and Ti-rich
phases are nonmetallic, reveal that ε[100]′ , ε[010]′ , and ε[001]′ are all

Figure 3. Nano- and atomic-scale structure of phase-separated heterostructures. Cross-sectional bright-field TEM images of the (a) (001)- and
(b) (100)-oriented heterostructures after annealing at 673 K for 24 h. The inset of (b) shows a SAED pattern taken from the top area of the
film wherein the yellow arrows denote the superlattice peaks arising from the monoclinic nature of the V-rich phase. Combined STEM image
and energy-dispersive X-ray spectroscopy elemental maps wherein V is marked as blue and Ti as green for the annealed (c) (001)- and (d)
(100)-oriented heterostructures. HAADF-STEM images of the interface between the V- and Ti-rich phases in the (e) (001)- and (f) (100)-
oriented heterostructures. The insets of (e) show the FFT pattern of the Ti-rich area (top) and the V-rich phase area (bottom) from which the
Ti-rich phase is found to be tetragonal and the V-rich phase is monoclinic in nature.
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positive for both the (100)- and (001)-oriented hetero-
structures (Figure 4a,b, respectively). Measurements at 363
K, wherein the V-rich phase is now metallic, however, show
something very different. For both the (100)- and (001)-
oriented heterostructures, wherein the lamellae are vertically
and horizontally aligned relative to the film surface, respectively,
the ε[100],[010]′ and ε[001]′ responses show counter-trending
behavior with ε[001]′ remaining positive across the entire
wavelength regime studied herein and ε[100],[010]′ trending
toward negative and eventually turning negative at wavelengths
>1480 nm in the (001)-oriented heterostructures (Figure 4c,d).
In other words, the combination of the spinodal decomposition
which drives nanostructuring and the temperature-driven
metal-to-insulator transition in the V-rich phase creates a
mesoscale system which is fundamentally different at high and
low temperatures and from the as-grown, solid solution. The
presence of nanoscale order of the metallic and dielectric
phases, with a unit-cell periodicity much shorter than the
wavelength of light, drives metamaterial response including
further enhancement of the uniaxial anisotropy of the optical
response. In fact, one can reproduce similar trends as the
ellipsometrically derived data using a simple effective medium
approximation considering a layered VO2−TiO2 structure
(since the periodicity is much shorter than the wavelength of
light) (Supporting Information, Figure S7). The effective

medium model, in turn, lends credence to the observed trends
in anisotropic dielectric response in our self-assembled
nanostructures. Finally, we note that although at 363 K ε[100]
and ε[010] for the (100)-oriented heterostructures show a trend
toward negative values at longer wavelengths (Figure 4c) where
hyperbolic dispersion is promised, the failure to achieve actual
negative values in this wavelength regime can likely be ascribed
to the less ordered nature of these structures. Suggesting that
future work to improve structural order could further improve
the optical response of these structures.
To further understand the nature of this enhanced optical

anisotropy, we explored the optical iso-frequency surface of the
various materials. In general, the electromagnetic wave (k-
wavevector) propagation through uniaxially anisotropic materi-
als where ε[100] = ε[010] ≠ ε[001] is governed by the dispersion
relation

ε ε
ω+

+ =
k k k

c
[100]
2

[010]
2

[001]

[001]
2

[100],[010]

2

2
(1)

where k[uvw] is the [uvw] component of the wave vector, ω is
the frequency, and c is the speed of light. Using optical
properties at a wavelength of 1700 nm as an example, at 303 K,
the as-grown, solid solution (which is isotropic in nature) has
an iso-frequency k-space surface which is spherical while the

Figure 4. Nanostructure optical properties. Various components of the real part of the optical dielectric constant (ε′) measured as a function
of wavelength for as-grown, solid-solution heterostructures (dashed blue) and phase-separated nanostructures (solid black and red) for (a)
(100)- and (b) (001)-oriented heterostructures at 303 K and for (c) (100)- and (d) (001)-oriented heterostructures at 363 K. The extracted
iso-frequency surfaces of self-organized horizontally aligned nanostructures (at 1700 nm) at (e) 303 K and (f) 363 K where k0 = ω2/c2 is the
wavenumber in vacuum, kx, ky, and kz are the [100], [010], and [001] components of the wave vector, respectively.
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phase-separated heterostructures (which are anisotropic in
nature) exhibit an ellipsoidal iso-frequency k-space surface
(Figure 4e). At 363 K, in the phase-separated, (001)-oriented
heterostructures, however, we observe an extreme in dielectric
anisotropy where ε[100],[010]′ and ε[001]′ have opposite signs. In
such a case, the iso-frequency surface will become an open
hyperboloidal shape.47 In turn, the self-assembled, horizontally
aligned nanocomposite is thus characterized as a tunable
metamaterial which exhibits a dramatic change in the
wavevector iso-frequency contour from a closed ellipsoid at
low temperature (Figure 4e) into an open hyperboloid at high
temperature (Figure 4f) wherein negative refraction could be
possible (Supporting Information, Figure S8).48 Such hyper-
bolic dispersion could support infinitely large wavevectors
(known as high-k waves) and an enhanced photonic density of
states as compared to conventional materials which have a
bounded spherical/elliptical iso-frequency surface.49 In turn,
such effects have garnered much of the attention given to
hyperbolic metamaterials which are considered potentially
exciting for a range of optical imaging, sensing, and emission
engineering applications.8,18,47,48 For example, by supporting
the propagation of evanescent waves, hyperlenses based on
hyperbolic metamaterials can magnify sub-diffraction-limited
objects (i.e., far-field subwavelength imaging).50

CONCLUSION
Such self-assembled, ordered nanocomposite films with tunable
structural motifs and unit-cell dimensions as small as ∼15 nm
(smaller than the critical thickness for growth of uniform
continuous metallic film on semiconductor/dielectric substrates
and that achieved by conventional top-down process) can be
obtained by leveraging the innate tendencies of materials to
phase separate as in the spinodal decomposition of the VO2−
TiO2 system studied herein. Through the use of thin-film
epitaxy, we gain additional control of the phase separation
whereby unidirectional decomposition along the [001]S is
observed, and thus by changing substrate orientation, we can
create horizontally or vertically aligned lamellae. Subsequent
optical characterization of these phase-separated materials
demonstrates the potential of this approach to enhance optical
dielectric anisotropy and even gives rise to reversible,
temperature-tunable transformation from nonhyperbolic to
hyperbolic metamaterial behavior in the near-infrared wave-
length regime. The ability to tune the iso-frequency surface
from nonhyperbolic to hyperbolic provides additional degrees
of freedom to control light−matter interaction. In addition to
the global thermal triggering used here, electrical heating,51

electric field,52,53 and optical excitation54,55 could provide
alternative ways to induce phase transition and control the iso-
frequency surface in the self-assembled nanostructured
metamaterials.
This approach offers an alternative to complex and expensive

top-down fabrication methods for the production of nano-
structured metamaterials. With future efforts, more ordered
structures could be achieved and alternative material systems
(such as Al−Si56 and TiO2−RuO2

57) and other geometries
(such as 1−3-type nanowire structures) could be identified,
which would further enhance the efficacy of this spinodal
decomposition process for the scalable production of
metamaterials. In addition, it is conceivable that one could
greatly increase the scale of these structures while keeping the
same feature size or even synthesize bulk versions of these
materials to produce three-dimensional metamaterials. In

summary, this work provides an approach by which one can
fabricate large-scale, three-dimensional metamaterials with
nanoscale features and addresses challenges in the community
associated with making these exciting materials. Finally, these
results also have broad implications for the fabrication of
controlled, self-organized nanocomposite thin films for desired
functionalities using spinodal instabilities.

METHODS
Thin-Film Growth. VO2 and V0.6Ti0.4O2 films with a thickness of

50−90 nm were grown on rutile TiO2 (100) and (001) single-crystal
substrates by pulsed-laser deposition from ceramic targets of the same
composition at 673 K, an oxygen pressure of 10 mTorr, at a laser
repetition rate of 5 Hz, and a laser fluence of ∼1.2 J/cm2. Following
growth, the heterostructures were cooled to room temperature at a
rate of 5 °C/min under a dynamic oxygen pressure of 10 mTorr. Ex
post facto annealing was also completed at 673 K and in an oxygen
pressure of 10 mTorr for up to 24 h.

Structural and Transport Characterization. X-ray θ−2θ and
reciprocal space mapping studies were carried out on an X’Pert MRD
Pro diffractometer (Panalytical) using monochromatic Cu Kα
radiation. Thicknesses were measured via fitting of X-ray diffraction
Laue fringes and X-ray reflectivity studies. Cross-sectional TEM
samples were prepared using standard procedures including cutting,
gluing, mechanical polishing, and ion milling. The ion milling process
was performed on a Precision ion polishing system (model 691,
Gatan) with an incident ion angle of 5° and an accelerating voltage of
3 kV using liquid N2 to cool the stage. Bright-field TEM investigations
were carried out on a Tecnai G20, and HAADF-STEM was completed
in a FEI TITAN Cs-corrected ChemiSTEM electron microscope
operated at 200 kV. The temperature-dependent transport studies
were completed in a van der Pauw configuration in a Quantum Design
physical property measurement system.

Optical Characterization. Variable angle ellipsometry measure-
ments were completed in a variable angle spectroscopic ellipsometer
(VASE, J.A. Woollam Co, Inc.) with a heater cell in the spectral range
from 400 to 1700 nm. The incident angle was varied from 45 to 75°
with a step size of 5°. The ellipsometry measurements provide two
parameters φ and Δ. These ellipsometry parameters are, in turn,
related to the ratio of the reflection coefficients for the light of p-
polarization rp and s-polarization rs: ρ(θi) = rp/ri = tan(φ)exp(iΔ). In
turn, the optical dielectric constants were obtained by fitting the
ellipsometry data using different models to generate best fits to the
measured φ and Δ using the VASE software (raw ellipsometry data of
the parameter φ vs wavelength is provided, Supporting Information,
Figures S9−S11). The insulating TiO2 was fitted by a biaxial layer with
two Cauchy models since the rutile TiO2 has anisotropic dielectric
response (i.e., ε[100] = ε[010] ≠ ε[001]).

58 A general oscillator layer
(GOL) model59 consisting of two Lorentz oscillators (Lorentz model)
was used to fit the insulating VO2 at 303 K and the as-grown, solid-
solution heterostructures (semiconducting in nature) at both temper-
atures. A GOL model consisting of one Lorentz oscillator and one
Drude oscillator (Drude−Lorentz model) was used to fit the metallic
VO2 at 363 K. A biaxial layer with two GOLs consisting of hybrid
Gaussian−Lorentz−Drude oscillators was used to fit all phase-
separated structures.42,43 To simplify the complexity of fitting, we
started our fitting from 600 nm to reduce the number of oscillators in
the short wavelength region. All fitting resulted in a reasonably small
mean squared error (less than 3).

ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acsnano.6b05736.

Optical dielectric response of TiO2 and VO2 thin films,
structural characterization of as-grown V0.6Ti0.4O2 thin
films, reciprocal space mapping of phase-separated

ACS Nano Article

DOI: 10.1021/acsnano.6b05736
ACS Nano 2016, 10, 10237−10244

10242

http://pubs.acs.org/doi/suppl/10.1021/acsnano.6b05736/suppl_file/nn6b05736_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsnano.6b05736/suppl_file/nn6b05736_si_001.pdf
http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acsnano.6b05736
http://dx.doi.org/10.1021/acsnano.6b05736


(100)-oriented heterostructures, evolution of phase
separation during spinodal decomposition, plan-view
TEM imaging of the phase-separated (100)-oriented
heterostructure, optical dielectric response of various
heterostructures, effective medium theory calculations
multilayer hyperbolic metamaterials, tunable refraction
simulation, and ellipsometric measurements of hetero-
structures (PDF)

AUTHOR INFORMATION
Corresponding Authors
*E-mail: zuhuang@berkeley.edu.
*E-mail: lwmartin@berkeley.edu.
ORCID
Zuhuang Chen: 0000-0003-1912-6490
Author Contributions
X.W. and Y.Q. contributed equally to this work.
Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
We would like to thank Dr. Jingbo Sun for useful discussion.
Z.H.C. and R.G. acknowledge the support of the Air Force
Office of Scientific Research under Grant No. FA9550-12-1-
0471. Y.Q. acknowledges support of the National Science
Foundation of China under Grant Nos. 11204069 and
51472078. B.A.A. acknowledges support from the Department
of Energy, Basic Energy Science, under Grant No. DE-
SC0012375 for the development of various oxide films and
optical studies. R.X. acknowledges support from the National
Science Foundation under Grant No. DMR-1451219. L.W.M.
acknowledges support from the Laboratory Directed Research
and Development Program of Lawrence Berkeley National
Laboratory under U.S. Department of Energy Contract No.
DE-AC02-05CH11231 for the development of light−matter
interactions in materials. X.W. and J.Y. acknowledge the
support from the Hellman Family Foundation. The ellipsom-
etry measurements were carried out in the Frederick Seitz
Materials Research Laboratory Central Research Facilities,
University of Illinois.

REFERENCES
(1) Smith, D. R.; Pendry, J. B.; Wiltshire, M. C. K. Metamaterials and
Negative Refractive Index. Science 2004, 305, 788−792.
(2) Shelby, R. A.; Smith, D. R.; Schultz, S. Experimental Verification
of a Negative Index of Refraction. Science 2001, 292, 77−79.
(3) Zhang, S.; Fan, W.; Panoiu, N. C.; Malloy, K. J.; Osgood, R. M.;
Brueck, S. R. J. Experimental Demonstration of Near-Infrared
Negative-Index Metamaterials. Phys. Rev. Lett. 2005, 95, 137404.
(4) Smith, D. R.; Schurig, D. Electromagnetic Wave Propagation in
Media with Indefinite Permittivity and Permeability Tensors. Phys. Rev.
Lett. 2003, 90, 077405.
(5) Pendry, J. B. Negative Refraction Makes a Perfect Lens. Phys. Rev.
Lett. 2000, 85, 3966−3969.
(6) Schurig, D.; Mock, J. J.; Justice, B. J.; Cummer, S. A.; Pendry, J.
B.; Starr, A. F.; Smith, D. R. Metamaterial Electromagnetic Cloak at
Microwave Frequencies. Science 2006, 314, 977−980.
(7) Zheludev, N. I. The Road Ahead for Metamaterials. Science 2010,
328, 582−583.
(8) Hoffman, A. J.; Alekseyev, L.; Howard, S. S.; Franz, K. J.;
Wasserman, D.; Podolskiy, V. A.; Narimanov, E. E.; Sivco, D. L.;
Gmachl, C. Negative Refraction in Semiconductor Metamaterials. Nat.
Mater. 2007, 6, 946−950.

(9) Naik, G. V.; Liu, J.; Kildishev, A. V.; Shalaev, V. M.; Boltasseva, A.
Demonstration of Al:ZnO as a Plasmonic Component for Near-
Infrared Metamaterials. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 8834−
8838.
(10) Chanda, D.; Shigeta, K.; Gupta, S.; Cain, T.; Carlson, A.; Mihi,
A.; Baca, A. J.; Bogart, G. R.; Braun, P.; Rogers, J. A. Large-Area
Flexible 3D Optical Negative Index Metamaterial Formed by
Nanotransfer Printing. Nat. Nanotechnol. 2011, 6, 402−407.
(11) Liu, N.; Guo, H.; Fu, L.; Kaiser, S.; Schweizer, H.; Giessen, H.
Three-Dimensional Photonic Metamaterials at Optical Frequencies.
Nat. Mater. 2008, 7, 31−37.
(12) Boltasseva, A.; Atwater, H. A. Low-Loss Plasmonic Meta-
materials. Science 2011, 331, 290−291.
(13) Nan, C.-W.; Jia, Q. Obtaining Ultimate Functionalities in
Nanocomposites: Design, Control, and Fabrication. MRS Bull. 2015,
40, 719−724.
(14) Zheng, H.; Wang, J.; Lofland, S. E.; Ma, Z.; Mohaddes-Ardabili,
L.; Zhao, T.; Salamanca-Riba, L.; Shinde, S. R.; Ogale, S. B.; Bai, F.;
Viehland, D.; Jia, Y.; Schlom, D. G.; Wuttig, M.; Roytburd, A.;
Ramesh, R. Multiferroic BaTiO3-CoFe2O4 Nanostructures. Science
2004, 303, 661−663.
(15) MacManus-Driscoll, J. L.; Zerrer, P.; Wang, H.; Yang, H.; Yoon,
J.; Fouchet, A.; Yu, R.; Blamire, M. G.; Jia, Q. Strain Control and
Spontaneous Phase Ordering in Vertical Nanocomposite Hetero-
epitaxial Thin Films. Nat. Mater. 2008, 7, 314−320.
(16) Harrington, S. A.; Zhai, J. Y.; Denev, S.; Gopalan, V.; Wang, H.
Y.; Bi, Z. X.; Redfern, S. A. T.; Baek, S. H.; Bark, C. W.; Eom, C. B.;
Jia, Q. X.; Vickers, M. E.; MacManus-Driscoll, J. L. Thick Lead-Free
Ferroelectric Films with High Curie Temperatures through Nano-
composite-Induced Strain. Nat. Nanotechnol. 2011, 6, 491−495.
(17) Yang, J.-C.; He, Q.; Zhu, Y.-M.; Lin, J.-C.; Liu, H.-J.; Hsieh, Y.-
H.; Wu, P.-C.; Chen, Y.-L.; Lee, S.-F.; Chin, Y.-Y.; Lin, H.-J.; Chen, C.-
T.; Zhan, Q.; Arenholz, E.; Chu, Y.-H. Magnetic Mesocrystal-Assisted
Magnetoresistance in Manganite. Nano Lett. 2014, 14, 6073−6079.
(18) Yao, J.; Liu, Z.; Liu, Y.; Wang, Y.; Sun, C.; Bartal, G.; Stacy, A.
M.; Zhang, X. Optical Negative Refraction in Bulk Metamaterials of
Nanowires. Science 2008, 321, 930.
(19) Vignolini, S.; Yufa, N. A.; Cunha, P. S.; Guldin, S.; Rushkin, I.;
Stefik, M.; Hur, K.; Wiesner, U.; Baumberg, J. J.; Steiner, U. A 3D
Optical Metamaterial Made by Self-Assembly. Adv. Mater. 2012, 24,
OP23−OP27.
(20) Young, K. L.; Ross, M. B.; Blaber, M. G.; Rycenga, M.; Jones, M.
R.; Zhang, C.; Senesi, A. J.; Lee, B.; Schatz, G. C.; Mirkin, C. A. Using
DNA to Design Plasmonic Metamaterials with Tunable Optical
Properties. Adv. Mater. 2014, 26, 653−659.
(21) Yang, S.; Ni, X.; Yin, X.; Kante, B.; Zhang, P.; Zhu, J.; Wang, Y.;
Zhang, X. Feedback-Driven Self-Assembly of Symmetry-Breaking
Optical Metamaterials in Solution. Nat. Nanotechnol. 2014, 9, 1002−
1006.
(22) Li, L.; Sun, L.; Gomez-Diaz, J. S.; Hogan, N. L.; Lu, P.;
Khatkhatay, F.; Zhang, W.; Jian, J.; Huang, J.; Su, Q.; Fan, M.; Jacob,
C.; Li, J.; Zhang, X.; Jia, Q.; Sheldon, M.; Alu,̀ A.; Li, X.; Wang, H. Self-
Assembled Epitaxial Au−Oxide Vertically Aligned Nanocomposites for
Nanoscale Metamaterials. Nano Lett. 2016, 16, 3936−3943.
(23) Pawlak, D. A.; Turczynski, S.; Gajc, M.; Kolodziejak, K.;
Diduszko, R.; Rozniatowski, K.; Smalc, J.; Vendik, I. How Far Are We
from Making Metamaterials by Self-Organization? The Microstructure
of Highly Anisotropic Particles with an SRR-Like Geometry. Adv.
Funct. Mater. 2010, 20, 1116−1124.
(24) Kim, J.; Aagesen, L. K.; Choi, J. H.; Choi, J.; Kim, H. S.; Liu, J.;
Cho, C.-R.; Kang, J. G.; Ramazani, A.; Thornton, K.; Braun, P. V.
Template-Directed Directionally Solidified 3D Mesostructured AgCl−
KCl Eutectic Photonic Crystals. Adv. Mater. 2015, 27, 4551−4559.
(25) MacManus-Driscoll, J. L.; Suwardi, A.; Wang, H. Composite
Epitaxial Thin Films: a New Platform for Tuning, Probing, and
Exploiting Mesoscale Oxides. MRS Bull. 2015, 40, 933−942.
(26) Cahn, J. W.; Hilliard, J. E. Free Energy of a Nonuniform System.
I. Interfacial Free Energy. J. Chem. Phys. 1958, 28, 258−267.

ACS Nano Article

DOI: 10.1021/acsnano.6b05736
ACS Nano 2016, 10, 10237−10244

10243

http://pubs.acs.org/doi/suppl/10.1021/acsnano.6b05736/suppl_file/nn6b05736_si_001.pdf
mailto:zuhuang@berkeley.edu
mailto:lwmartin@berkeley.edu
http://orcid.org/0000-0003-1912-6490
http://dx.doi.org/10.1021/acsnano.6b05736


(27) Cahn, J. W. On Spinodal Decomposition. Acta Metall. 1961, 9,
795−801.
(28) Schultz, A. H.; Stubican, V. S. Modulated Structures in the
System TiO2-SnO2. Philos. Mag. 1968, 18, 929−937.
(29) Guiton, B. S.; Davies, P. K. Nano-Chessboard Superlattices
Formed by Spontaneous Phase Separation in Oxides. Nat. Mater.
2007, 6, 586−591.
(30) Cahn, J. W. On Spinodal Decomposition in Cubic Crystals. Acta
Metall. 1962, 10, 907−913.
(31) Moore, A. C. Spinodal Decomposition in Naturally Occurring
Non-Cubic Spinels. Nature 1978, 274, 237−239.
(32) Kuroda, S.; Nishizawa, N.; Takita, K.; Mitome, M.; Bando, Y.;
Osuch, K.; Dietl, T. Origin and Control of High-Temperature
Ferromagnetism in Semiconductors. Nat. Mater. 2007, 6, 440−446.
(33) de Gennes, P. G. Dynamics of Fluctuations and Spinodal
Decomposition in Polymer Blends. J. Chem. Phys. 1980, 72, 4756−
4763.
(34) Hiroi, Z.; Hayamizu, H.; Yoshida, T.; Muraoka, Y.; Okamoto, Y.;
Yamaura, J.-i.; Ueda, Y. Spinodal Decomposition in the TiO2−VO2

System. Chem. Mater. 2013, 25, 2202−2210.
(35) Morin, F. J. Oxides Which Show a Metal-to-Insulator Transition
at the Neel Temperature. Phys. Rev. Lett. 1959, 3, 34−36.
(36) Krishnamoorthy, H. N. S.; Zhou, Y.; Ramanathan, S.;
Narimanov, E.; Menon, V. M. Tunable Hyperbolic Metamaterials
Utilizing Phase Change Heterostructures. Appl. Phys. Lett. 2014, 104,
121101.
(37) Qazilbash, M. M.; Brehm, M.; Chae, B.-G.; Ho, P. C.; Andreev,
G. O.; Kim, B.-J.; Yun, S. J.; Balatsky, A. V.; Maple, M. B.; Keilmann,
F.; Kim, H.-T.; Basov, D. N. Mott Transition in VO2 Revealed by
Infrared Spectroscopy and Nano-Imaging. Science 2007, 318, 1750−
1753.
(38) Driscoll, T.; Kim, H.-T.; Chae, B.-G.; Kim, B.-J.; Lee, Y.-W.;
Jokerst, N. M.; Palit, S.; Smith, D. R.; Di Ventra, M.; Basov, D. N.
Memory Metamaterials. Science 2009, 325, 1518−1521.
(39) Dicken, M. J.; Aydin, K.; Pryce, I. M.; Sweatlock, L. A.; Boyd, E.
M.; Walavalkar, S.; Ma, J.; Atwater, H. A. Frequency Tunable Near-
Infrared Metamaterials Based on VO2 Phase Transition. Opt. Express
2009, 17, 18330−18339.
(40) Hirano, S.-i.; Yogo, T.; Kikuta, K.-i.; Asai, E.; Sugiyama, K.;
Yamamoto, H. Preparation and Phase Separation Behavior of (Co,
Fe)3O4 Films. J. Am. Ceram. Soc. 1993, 76, 1788−1792.
(41) Hiroi, Z.; Yoshida, T.; Yamaura, J.; Okamoto, Y. Spinodally
Decomposed Nanostructures in a TiO2−VO2 Crystal. APL Mater.
2015, 3, 062508.
(42) Wu, Y. F.; Fan, L.; Liu, Q.; Chen, S.; Huang, W.; Chen, F.; Liao,
G.; Zou, C.; Wu, Z. Decoupling the Lattice Distortion and Charge
Doping Effects on the Phase Transition Behavior of VO2 by Titanium
(Ti4+) Doping. Sci. Rep. 2015, 5, 9328.
(43) Chen, S.; Liu, J.; Wang, L.; Luo, H.; Gao, Y. Unraveling
Mechanism on Reducing Thermal Hysteresis Width of VO2 by Ti
Doping: a Joint Experimental and Theoretical Study. J. Phys. Chem. C
2014, 118, 18938−18944.
(44) Lee, S.; Cheng, C.; Guo, H.; Hippalgaonkar, K.; Wang, K.; Suh,
J.; Liu, K.; Wu, J. Axially Engineered Metal− Insulator Phase
Transition by Graded Doping VO2 Nanowires. J. Am. Chem. Soc.
2013, 135, 4850−4855.
(45) Sun, J.; Zhou, J.; Li, B.; Kang, F. Indefinite Permittivity and
Negative Refraction in Natural Material: Graphite. Appl. Phys. Lett.
2011, 98, 101901.
(46) Tumkur, T.; Barnakov, Y.; Kee, S. T.; Noginov, M. A.;
Liberman, V. Permittivity Evaluation of Multilayered Hyperbolic
Metamaterials: Ellipsometry vs. Reflectometry. J. Appl. Phys. 2015,
117, 103104.
(47) Poddubny, A.; Iorsh, I.; Belov, P.; Kivshar, Y. Hyperbolic
Metamaterials. Nat. Photonics 2013, 7, 948−957.
(48) Lu, D.; Kan, J. J.; Fullerton, E. E.; Liu, Z. Enhancing
Spontaneous Emission Rates of Molecules Using Nanopatterned
Multilayer Hyperbolic Metamaterials. Nat. Nanotechnol. 2014, 9, 48−
53.

(49) Krishnamoorthy, H. N. S.; Jacob, Z.; Narimanov, E.;
Kretzschmar, I.; Menon, V. M. Topological Transitions in
Metamaterials. Science 2012, 336, 205−209.
(50) Liu, Z.; Lee, H.; Xiong, Y.; Sun, C.; Zhang, X. Far-Field Optical
Hyperlens Magnifying Sub-Diffraction-Limited Objects. Science 2007,
315, 1686−1686.
(51) Crunteanu, A.; Givernaud, J.; Leroy, J.; Mardivirin, D.;
Champeaux, C.; Orlianges, J. − C.; Catherinot, A.; Blondy, P.
Voltage-and Current-Activated Metal−Insulator Transition in VO2-
Based Electrical Switches: a Lifetime Operation Analysis. Sci. Technol.
Adv. Mater. 2010, 11, 065002.
(52) Zhou, Y.; Chen, X.; Ko, C.; Yang, Z.; Mouli, C.; Ramanathan, S.
Voltage-Triggered Ultrafast Phase Transition in Vanadium Dioxide
Switches. IEEE Electron Device Lett. 2013, 34, 220−222.
(53) Nakano, M.; Shibuya, K.; Okuyama, D.; Hatano, T.; Ono, S.;
Kawasaki, M.; Iwasa, Y.; Tokura, Y. Collective Bulk Carrier
Delocalization Driven by Electrostatic Surface Charge Accumulation.
Nature 2012, 487, 459−462.
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