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Non-Hermitian topological systems, by combining the advantages of topological robustness and sensitivity induced by non-
Hermiticity, have recently emerged and attracted much research interest. Here, we propose a device based on the topological
coupler in elastic waves with non-Hermiticity, which contains two topological domain walls and four ports. In this device,
topological robustness routes the transmission of waves, while non-Hermiticity controls the gain or loss of waves as they
propagate. These mechanisms result in continuous and quantitative control of the energy distribution ratio of each port. A non-
Hermitian Hamiltonian is introduced to reveal the coupling mechanism of the topological coupler, and a scattering matrix is
proposed to predict the energy distribution ratio of each port. The proposed topological coupler, which provides a new paradigm
for the non-Hermitian topological systems, can be employed as a sensitive beam splitter or a coupler switch. Moreover, the
topological coupler has potential applications in information processing and logic operation in elastic circuits or networks, and
the paradigm also applies to other classical systems.
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1 Introduction

The concept of topological physics stems from quantum
condensed matters [1-4], revealing that the topological in-
sulators can support topologically protected edge states and
interface states. These states are unidirectional, back-
scattering-immune [5], and robust against the local defects,
disorders, and perturbations of the boundaries [6]. As clas-
sical analogies of the quantum topological insulators [7], the
associated unidirectional propagating edge states have been
extended into different classical wave regimes such as pho-

tonics [8,9], airborne acoustics [10-14], water waves [15]
and elastic waves [16-21]. Up to date, topology has found
applications in waveguide coupling [22], robust Fano re-
sonance [23], vortex lasing [24], and one-way propagation of
signals for communications and spin-wave manipulation
devices [25,26]. Therefore, topologically protected edge
states with backscattering-immune and spin-momentum
locking effects provide robustness of operating classical
waves.
On the other hand, non-Hermiticity is another concept

extended from quantum condensed matters to classical wave
regimes, which refers to the gain and loss contrast of an
active system or the loss contrast in a totally passive system
[27]. Non-Hermiticity focuses on the system sensitivity in
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terms of the material gain or loss, and it can manipulate wave
propagation as proposed in the optical [28-30], acoustic
[31,32], and elastic systems [33]. With increasing non-
Hermiticity, the system will evolve from the so-called PT-
symmetric phase into PT-broken phase by going through an
exceptional point, where multiple eigenstates (and eigenva-
lues) coalesce [34]. The existence of exceptional points is
accompanied by many intriguing phenomena, such as uni-
directional invisibility [31,35], unidirectional energy transfer
[36], single-mode lasing [37], and loss-induced lasing [38].
In elastic waves, the loss and gain contrast can be realized by
piezoelectric elements that are composed of piezoelectric
sensors and actuators with active feedback control loops
[39,40]. Comparatively, the loss contrast in a totally passive
system can be implemented by loading porous rubber sheets
on the surface of metamaterials [41].
Very recently, by combining the above two concepts of

topology and non-Hermiticity with metamaterials and pho-
tonic/phononic crystals, many special types of topological
boundary and corner states have been proposed with optical
[42], acoustic [43,44], mechanical [45], and elastic systems
[46]. From a fundamental perspective, topological systems
with non-Hermiticity can be used to generate new kinds of
topological entities such as bulk Fermi arcs [47], bulk-edge
correspondence in the non-Hermitian version [48], and non-
Hermitian skin effect [49]. Furthermore, the introduction of
non-Hermiticity to topological systems offers a new degree
of freedom to control wave propagation, such as concurrent
existence of exceptional point and topological edge states,
novel non-Hermiticity-induced topological entities [50,51].
In this article, we develop a non-Hermitian topological

coupler in elastic waves, which contains a sandwich con-
figuration of a topological insulator (TI) in between two
regions of ordinary insulators (OI). We also investigate how
the introduction of non-Hermiticity (balanced gain and loss)
can be used to quantitatively control the coupling of topo-
logical interface states. As we shall see, topology provides
robust interface states with backscattering-immune and spin-
momentum locking properties, while non-Hermiticity pro-
vides sensitivity to control energy distribution ratios with
gain or loss. In addition, a non-Hermitian Hamiltonian model
and a scattering matrix are established to reveal the energy
distribution ratios of the topological coupler. The proposed
topological coupler with quantitative tunability of elastic
waves is a promising candidate for information processing
and logic operation, which may find potential applications in
integrated topological circuits or networks.

2 Theory and model

We start from a hexagonal-lattice phononic crystal, as illu-
strated in Figure 1(a), a red dashed hexagonal box marks one

unit cell, which is composed of six identical equilateral tri-
angles connected by twelve cuboid beams. The geometry
parameters are correspondingly labeled in Figure 1(a), and
the dimensions are chosen as: a=12 mm, A a= 3 , h=2 mm,
b=6 mm, g=1.6 mm, and dc=A/3. The key geometry para-
meter is r, which indicates the distance from the center of the
unit cell (green dot) to the center of the equilateral triangle
(red dot). The material is a kind of cured photosensitive resin
with material parameters of density ρ0=1190 kg/m

3, Young’s
modulus E0=3.4 GPa, and Poisson’s ratio ν=0.35 [52]. We
assume e−iωt time-harmonic convention. The simulated (with
commercial software COMSOL Multiphysics) band struc-
ture of the phononic crystal with r=dc is shown in Figure
1(b), doubly degenerate Dirac cones (indicated by a blue dot)
can be achieved at the Г point [53]. The Dirac cones can be
gapped when r deviates from dc, as the band structure shown
in Figure 1(c) for r=0.8dc and band structure shown in Figure
1(d) for r=1.2dc. The out-of-plane displacement (real(w)) for
eigenstates of p p d d,  ,  ,  x y x y xy+2 2 at the Г point are shown in
the insets of Figure 1(c) and (d), respectively. The inverse
order of p/d modes in Figure 1(d) implies the topological
phase translates from trivial (r=0.8dc) to nontrivial (r=1.2dc)
[53].
Figure 1(e) shows the domain wall constructed by an OI

and a TI region, where the interface is marked by a red curve.
A super unit cell with a height of Λ=3a is marked by a black
hollow box. The projected band structure for this super unit
cell is shown in Figure 1(f), interface states (blue stars) can
be seen within the bulk bands (gray dots). The interface
states with positive group velocity are pseudospin up and
those with negative group velocity are pseudospin down. A
pseudospin up (down) state is indicated by a red (green) star
and marked with an anti-clockwise (a clockwise) arrow to
denote its phase evolution, which reveals the spin-
momentum locking property of the topological interface
states. The bands for interface states near the Г point are
approximately linear. Their fitting lines with a function of f=
±vFky+ωF/2π are plotted by red lines in Figure 1(f). The fit-
ting coefficients are νF=22.6 m/s and ωF=2π×8.8 kHz, which
will be used to build the analytical model later. The spin-
momentum locking feature can also be proved by the con-
figuration shown in Figure 1(g), where a source with
clockwise (pseudospin down) or anti-clockwise (pseudospin
up) phase winding [53,54] is placed in the middle of the
domain wall. The interface states with positive and negative
group velocity are selectively excited and shown in the left
and right panels of Figure 1(g), respectively. These topolo-
gical interface states will be used as a foundation for de-
signing the topological coupler.
We then combine two domain walls together to construct a

super unit cell as shown in Figure 2(a). The field maps (real
(w)) for four eigenstates of the super unit cell with N=5, at
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ky=0.3π/Λ are listed as illustrative examples. It can be seen
that elastic waves are concentrated in the vicinity of two
interfaces (indicated by black dashed lines) and ex-
ponentially decay away from them, implying the simulta-
neous existence of two interface states. The eigenstates in the
first (f=9.5 kHz) and last (f=8.14 kHz) panels are anti-
symmetric (indicated by “A”) along the x-direction, while
the eigenstates in the second (f=9.44 kHz) and third (f=
8.21 kHz) panels are symmetric (indicated by “S”) along the
x-direction. Pseudospins of the interface states are indicated
by clockwise (pseudospin down) or anti-clockwise (pseu-
dospin up) arrows, and the interface states concentrated at
two interfaces possess opposite pseudospins.
The simulated band structures for the super unit cell of the

OI-TI-OI configuration with N=10, 5, and 1 are shown in
Figure 2(b)-(d), respectively. Topological interface states
(blue stars) can be seen within the projected bulk bands (gray
dots). We note that each band of the interface states is ap-
proximately doubly degenerate as we are putting two topo-
logical domain walls together. The increase of bandgap
width (around 2η of size in frequency) at the Г point can be
seen as N decrease.
To analytically investigate the bandgap of the interface

states supported by the OI-TI-OI configuration, we establish
a basis of L L R R{ ,  ,  ,  }+ + , where “L” and “R” indicate the
interface states on the left and right domain wall, and the
subscript “+” and “−” indicate up and down pseudospin
properties of the interface states. Equivalently, this basis is

the four interface states similar to Figure 2(b) as N . The
Hamiltonian for the topological interface states on the basis
of L L R R{ ,  ,  ,  }+ + can be written as [55]:
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where ωF and νF are the fitting parameters extracted from a
single OI-TI domain wall case (Figure 1(f)). I4 is a four-by-
four identity matrix. η corresponds to the coupling strength
between the interfaces with the same pseudospin at different
domain walls. ζ indicates the coupling strength between the
interface states with different pseudospins at different do-
main walls, which is due to the finite-size effect. With this
Hamiltonian, the band structures of the interface states can
be given by the governing equation of H f= , where ψ=
(C1, C2, C3, C4), C1, C2, C3, and C4 are the coefficients of the
elements in L L R R{ ,  ,  ,  }+ + respectively, f is frequency.
The coupling strength η and ζ can be obtained by fitting the
simulated eigenfrequency at the Г point. The band structures
reproduced by the eigenvalues of the Hamiltonian H are
respectively plotted by red, green, black, and magenta da-
shed lines in Figure 2(b)-(d). The good agreement between
the model results and the simulated results confirms the
validity of the Hamiltonian model. The extracted coupling
strengths from the Hamiltonian model for N=5 are η=95 Hz

Figure 1 (Color online) (a) Schematic illustration of the phononic crystal plate. The unit cell (marked by a red dashed hexagonal box) with a side length
a=12 mm, lattice constant A a= 3 , and thickness h=2 mm, which is composed of six equilateral triangles and twelve cuboid beams. The equilateral
triangles with a side length b=6 mm and the cuboid beams with a width g=1.6 mm. The distance from the unit cell center (green dot) to the equilateral triangle
(red dot) center is r, and to the junction of two beams (blue dot) is dc=A/3. (b)-(d) Band structure for r=dc (b), r=0.8dc (c), and r=1.2dc (d). The insets show the
p and d eigenmodes at the Г point. (e) A topological domain wall (indicated by a red curve) constructed by an OI (left) and a TI (right) region. A super unit
cell with a height of Λ=3a is marked by a black dashed box. (f) Projected band structure of the super unit cell in (e). Gray dots: bulk bands; blue stars:
interface states. The pseudospins of the interface states at 8.7 kHz, with ky=±0.05π/Λ (red and green stars) are indicated by anti-clockwise (pseudospin up) and
clockwise (pseudospin down) arrows, respectively. (g) The out-of-plane displacement (|w|) of the topological interface states at 8.7 kHz excited by a
pseudospin up source (left panel) or a pseudospin down source (right panel).
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and ζ=8 Hz. Clearly, η is much larger than ζ, which implies
that the bandgap is dominantly caused by the coupling be-
tween interface states with the same pseudospin. The simu-
lated bandgap widths (blue stars) and coupling strength (η)
extracted from the Hamiltonian model (green triangles)
against N are shown in Figure 2(e). An exponential fitting
(red line) with 2η=αe–βN shows that the bandgap widths and
the coupling strengths decrease exponentially as the unit cell
of TI (N) increases, the corresponding fitting results are
α=1.35 kHz and β=0.4.
A topological coupler composed of two domain walls with

a finite height in y is proposed and shown in Figure 2(f). The
coupling region of size 25A (in width) by 33a0 (in height) is
marked by a red dashed box, out of which is absorbing
material to reduce the reflection from the outer boundaries.
Four terminals of the two domain walls are marked by black
rectangles and correspondingly labeled as port-1 to port-4.

Here, a pseudospin up source is placed near port-1 to excite
the pseudospin up interface states. The field map w for N=5
at 8.8 kHz is shown as an illustrative example in Figure 2(f),
it can be seen that the interface states are mainly coupled
from port-1 into port-3.
To quantitatively describe the coupling energy ( |w|2)

between each port, we define the energy distribution ratio for
each port as:

P
w

w
= , (2)i

P

j P

2

2
i

j

where wPi
is the out-of-plane displacement of elastic waves

at the ith port, and the summation excludes the port where the
source is placed, for example, in Figure 2(f) the source is
placed at port-1, then i, j=2, 3, 4. The simulated results for P2
(black), P3 (red), and P4 (blue) are plotted by short dashed

Figure 2 (Color online) (a) Super unit cells of the OI-TI-OI configuration, a TI region with N-unit cells (N=5) in between two OI regions with ten-unit cells.
Field maps (real(w)) for four eigenmodes at ky=0.3π/Λ, f=9.5, 9.44, 8.21, and 8.14 kHz are listed. Symmetric (anti-symmetric) field maps along the x-axis are
labeled as “S” (“A”). The clockwise and anti-clockwise arrows indicate the phase evolutions of the interface states concentrate at two interfaces. (b)-(d) The
projected band structures for N=10, 5, and 1, respectively. Gray dots: projected bulk bands; blue stars: interface states. The lines are extracted from the
Hamiltonian model. (e) Blue stars: the simulated bandgap. Green triangles: coupling strength (η) extracted from the Hamiltonian model. Red line: the
exponentially fitting (2η=αe–βN) of the simulated bandgap. (f) Field map of the out-of-plane displacement (|w|) for the topological coupler with N=5. Red
dashed rectangle: coupling region with 25A in width and 33a0 in height; black rectangles: four ports. (g)-(i) The energy distribution ratios for the topological
coupler with N=10, 5, and 1, respectively. A pseudospin up source is placed near port-1. The short dashed lines are simulated results, and the solid lines are
extracted from the scattering matrix. The gray regions indicate the bandgaps of the interface states in (c) and (d).
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lines in Figure 2(g)-(i) for N equal to 10, 5, and 1, respec-
tively.
On the other hand, the energy distribution ratios can also

be extracted from the Hamiltonian model. Specifically, by
substituting ky into i y, the governing equation about ky can
be changed into that about y, then a transfer matrix can be
established, which describes the propagation of waves within
the topological coupler with a finite height in the y-direction.
By changing the basis of the transfer matrix, a scattering
matrix S can be formulated, then the energy distribution of
each port can be solved by the scattering matrix. Details of
the derivation of the scattering matrix are provided in
Appendix. In Figure 2(f), we place a pseudospin up source
near port-1 to excite the topological coupler. The coefficients
of the incident wave can be expressed as (1, 0, 0, 0)T, and the
outgoing waves at the ith port then can be directly calculated
by Si1. The energy distribution ratios for port-2 to port-4 can
be extracted from the scattering matrix by

P
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The model results for P2 (black), P3 (red), and P4 (blue) are
plotted by solid lines in Figure 2(g)-(i) for N equal to 10, 5,
and 1, respectively. The good agreement between the simu-
lated results and the model results implies the scattering
matrix extracted from the Hamiltonian is valid to predict the
energy distribution ratios of the topological coupler. It can be
seen that as N decreases from 10 to 1, the energy distribution
ratios gradually convert from P2 dominance into P3 dom-
inance within the bandgaps (indicated by gray boxes), and P4
is always suppressed, which verifies the topological robust-
ness can control the coupling route to each port. In addition,
the energy distribution ratios for the same configuration but
excited by a pseudospin down source can be predicted by
time-reversal symmetry, for this case, the source should be
placed near port-2.

3 Results and discussions

To realize a sensitive and continuous tunability of the energy
distribution ratios, we introduce non-Hermiticity into the
topological coupler as an additional degree of freedom to
control the energy distribution ratios. Specifically, we in-
troduce a balanced loss and gain in the imaginary part of
Young’s modulus into the OI regions: on the left side with

E E= (1 + i )1 0 and on the right side with E E= (1 i )2 0 .
Where γ>0 (γ<0) corresponds to gain (loss) on the left side
and loss (gain) on the right side. The simulated eigen-
frequency (solved from eigenmode solver in COMSOL)
against γ at ky=0 for the configuration with N=5 (same
structure with Figure 2(a)) are plotted by black triangles and
red dots on the left (real part) and right (imaginary part)
panels of Figure 3(a). It can be seen, as the absolute value of
γ increase, the eigenfrequencies of the interface states evolve
from purely real into complex, the critical points, where
multiple eigenfrequencies and eigenmodes coalesce, are
termed as exceptional points and indicated by green arrows.
As γ is set to be 0.03, 0.057, 0.08, the PT-exact phase, ex-
ceptional point, and the PT-broken phase are obtained, re-
spectively. Besides, non-Hermiticity can be introduced into
the Hamiltonian in eq. (1) by adding an imaginary part into
ky, i.e., kIm( ) ±y , with a negative (positive) sign for
pseudospin up (down), and the fitting result is 75 m 1.
With all other parameters inheriting from the Hermitian
coupler with the same N, the complex band structures can be
extracted from the non-Hermitian Hamiltonian. The results
are plotted by red and black lines in the same figure, which
agrees well with the full-wave simulations.
The simulated eigenfrequency spectra of the interface

states against kywith γ=0.03, 0.057, 0.08 are correspondingly
plotted on the left (real part) and right (imaginary part) pa-
nels of Figure 3 (b)-(d). It can be seen, at ky=0, the real part of
the interface states has four branches and the imaginary part
degenerates at zero for the PT-exact phase. At the excep-
tional points both the real part and imaginary parts coalesce
at ky=0. For the PT-broken phase, the real part coalesces
while the imaginary part splits into four branches, implying
either gain or loss of the interface states at two domain walls.
The complex eigenfrequencies of the interface states ex-
tracted from the non-Hermitian Hamiltonian are plotted as
red lines. The good agreement with the simulated results
reveals that the Hamiltonian in eq. (1) is also valid near the Г
point by simply introducing an imaginary part into ky.
The field patterns (real(w)) of the eigenstates for γ=0.03,

0.57, and 0.08 at ky=0 are shown as color maps in Figure 3(e).
The amplitude for the field profiles (w ) at y=0 are plotted by
blue lines and shown on the right panels of the field patterns.
It can be seen that interface states are concentrated at the two
domain walls. For the PT-symmetric phase with γ=0.03 and
γ=0.057, field profiles of the four eigenstates are approxi-
mately symmetric along x, which implies that the non-Her-
miticity induces no concentration of the interface states
towards a single domain wall. For the PT-broken phase with
γ=0.08, the first and last panels correspond to the eigenstates
with positive imaginary eigenfrequency, the interface states
concentrated at the left OI-TI domain wall are enhanced and
the interface states concentrated at the right TI-OI domain
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wall are suppressed. The second and third panels correspond
to the eigenstates with negative imaginary eigenfrequency.
The enhancement and suppression of the interface states are
at the opposite domain walls. The field maps and the profiles
demonstrate the impact of non-Hermiticity on the interface
states at the two domain walls, and the concentration of in-
terface states can be used to modulate the energy distribution
ratios of a non-Hermitian topological coupler.
By assembling the super unit cells with different N, a to-

pological coupler device can be proposed, whose config-
uration is schematically illustrated in Figure 4(a). The TI
region is indicated by green and the OI regions are indicated
by blue, the number of the unit cells for TI spacing in the
center of the device is denoted as Nc (here Nc=3), the inter-
sections of the TI and OI regions are along ±60°. Each port is
indicated by a black box and labeled as port-1 to port-4,
respectively. The pink star indicates the location of the
pseudospin up source. For the current topological coupler
with a wedge-shaped TI region, the coupling strengths (η and
ζ ) are modeled as functions varying in y, so when calculating
the scattering matrix, the Hamiltonian H in eq. (1) is also

modeled as a function varying in y. The final transfer matrix
can be obtained by multiplying transfer matrices of each
layer with a height of Λ. With the corresponding scattering
matrix converted from the final transfer matrix, the energy
distribution ratios can be solved. The energy distribution
ratios against frequency for port-2, port-3, and port-4 of the
topological coupler device with γ=0 are plotted by black, red,
and blue lines in Figure 4(b). The short dashed lines are the
simulated results and the solid lines are the model results. It
can be seen that near the bandgap center (~8.8 kHz) most
energy couples from port-2 to port-3, which implies that near
the bandgap center the coupling strength reaches its max-
imum, and we get an energy distribution ratio of
P2=P3=50%. While P4 is always suppressed within the fre-
quency regime we are interested in, which is due to the spin-
momentum locking property of the interface states. The good
agreement between the simulated and model results verifies
the validity of the scattering matrix for the topological cou-
pler with a wedge-shaped TI region.
We then introduce non-Hermiticity into the OI regions

similar to Figure 3. The energy distribution ratios of P2 and

Figure 3 (Color online) (a) Eigenfrequency spectra against γ at ky=0, for an OI-TI-OI-type configuration with N=5. Left panel: real part; right panel:
imaginary part. The black triangles and red dots are simulated results and the lines are extracted from the Hamiltonian model with non-Hermiticity. The
simulated exceptional points at γ=±0.057 are indicated by green arrows. The gray dashed lines indicate the PT-exact phase (γ=0.03), the exceptional points (at
γ=0.057) and the PT-broken phase (γ=0.08). Band structures for the configuration with N=5, γ=0.03 (b), γ=0.057 (c), and γ=0.08 (d). The symbols indicate the
simulated results and the lines are extracted from the Hamiltonian model with non-Hermiticity. (e) Field patterns (real (w)) of the eigenstates with γ=0.03,
γ=0.057, and γ=0.08 at ky=0. The corresponding field profiles (w ) at y=0 are shown as blue lines on the right panels.
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P3 against γ are plotted by black and red lines in Figure 4(c).
The spectra show that as γ evolves from −0.1 to 0.1, P2 can be
tuned nearly from 0 to 100%, and P3 also can be tuned from
nearly 0 to 90%. The energy distribution ratios for the to-
pological coupler device with non-Hermiticity verify the
achievement of continuous and quantitative tunability by
combining the topological robustness and non-Hermiticity.
The short dashed lines are the simulated results, and the solid
lines are reproduced from the scattering matrix extracted
from the Hamiltonian model with non-Hermiticity. The good
agreement between the simulated and the model results
verifies that the non-Hermitian Hamiltonian model is still
valid to analyze the exotic scattering process of the topolo-
gical coupler and to predict the energy distribution ratios of
the non-Hermitian topological coupler. In addition, non-
Hermiticity can also be introduced by increasing the loss
contrast on two OI regions in a totally passive system
[27,41]. The 0 to 100% tunability of P2 can still hold.
The field maps (|w|) for P2=0% at γ=−0.1, P2=50% at γ=0,

and P2=100% at γ=0.1 are shown in Figure 4(d)-(f) as ex-
amples for the quantitative control of the energy distribution
ratios. The domain walls are marked by magenta dashed
lines, and the wave propagation directions are indicated by
magenta arrows. It can be seen from the field maps, for γ=
−0.1, the interface states excited from port-1 mainly trans-
port into port-3, and the waves transporting to port-2 are
decreased by non-Hermiticity; for γ=0, the interface states
transport equally into port-2 and port-3; for γ=0.1, the in-

terface states mainly transport into port-2, and the waves
transporting to port-3 are decreased by non-Hermiticity.
These field maps are consistent with the energy distribution
spectra shown in Figure 4(c). The energy distribution ratio
spectra and the field maps demonstrate the quantitative
control of the non-Hermitian topological coupler. The to-
pological coupler with Nc=3 is deliberately designed to sa-
tisfy P2=P3=50% at γ=0, which requires the smallest non-
Hermiticity ( ) to achieve P2 ranging from 0 to 1. The tuning
mechanism is also valid for other values of Nc but it needs a
larger . In addition, the wedge-shaped TI region also frees
the dependence of energy distribution ratios on the height of
the coupling region in the straight cases, which makes the
control more stable in applications. By coordinating the to-
pological protection and the non-Hermiticity, a topological
coupler device with flexible tunability is achieved, which can
be used as an on-demand coupler switch or a logical circuit
and may find promising applications in encrypted commu-
nication and signal processing.

4 Conclusions

In summary, we propose a non-Hermitian topological cou-
pler that is constructed by combining two domain walls. The
interface states supported by the two domain walls provide
topological transmission of the coupler. By tuning the dis-
tance between the two domain walls and inducing non-

Figure 4 (Color online) (a) Configuration of the proposed topological coupler with an increasing layer of TI (green) from the center (Nc=3) to the boundary
(N=16). The intersections of the TI and OI regions are along ±60°. The pink star marks the location of the pseudospin up source, ports are correspondingly
denoted from port-1 to port-4. (b), (c) Energy distribution ratios against frequency with γ=0 (b), and against γ at 8.8 kHz (c) for the topological coupler device
with Nc=3. The short dashed lines are simulated results and the solid lines are extracted from the scattering matrix. (d)-(f) The field patterns for the topological
coupler with Nc=3 at 8.8 kHz. (d) P2=0% for γ=−0.1. (e) P2=50% for γ=0. (f) P2=100% for γ=0.1. The intersections are marked by magenta dashed lines and
the main wave propagation directions are indicated by magenta arrows.
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Hermiticity, energy distribution ratios of the topological
coupler can be quantitatively modulated from 0 to 100%. A
non-Hermitian Hamiltonian is introduced to analyze the
exotic scattering process of the topological coupler and
predict the energy distribution ratios of the coupler. The
proposed topological coupler device, which provides a new
paradigm for the application of non-Hermitian topological
systems, can serve as an element in phononic crystal net-
works or circuits. To conclude, this paradigm has potential
applications in advanced acoustic signal processing, sensing,
and even logic operation.
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Appendix Derivation of scattering matrix

The derivation of scattering matrix starts from the Ha-
miltonian in eq. (1) on the basis of L L R R{ ,  ,  ,  }+ + . The
effective governing equation of the coupler can be
written as:

H f= , (a1)

where C C C C= ( , , , )1 2 3 4
T, C1, C2, C3, and C4 are the coef-

ficients of the elements in L L R R{ ,  ,  ,  }+ + respectively, f is
the frequency. The Hamiltonian can be divided into two parts
by separating ky, which governs the propagation of the
waves:

H H k v= , (a2)y0 F

where

H =

2 0

0 2

2 0

0 2

, (a3)0

F

F

F

F

and

=
1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

. (a4)

The governing equation then can be rewritten as:
H k v f( ) =y0 F , and we move ky to the right hand side:

v H f I k(  ) = yF
1 1

0 4 . Here, the bands of interface states
are linear near the Г point, ky can be well approximated to the
first order, and we then have the substitution
k y= i / = iy y. So the governing equation about ky can

be changed into that about y: v H f I(  ) = i yF
1 1

0 4 .
For a system with finite height in y, the solution of ψ as a
function of y can be given as: y( ) = e v H f I yi (  )F

1 1
0 4 , where

φ is independent of y. The transfer matrix for ψ(y) on the
basis of L L R R{ ,  ,  ,  }+ + can be written as:

T = e v H f I yi (  )F
1 1

0 4 .
As the schematic illustration shown in Figure a1,

wave coefficients located at y=a are denoted as
a L L R R( ) = ( , , , )a a a a+, , +, ,

T, and located at y=b are denoted

as b L L R R( ) = ( , , , )b b b b+, , +, ,
T, where “L” (“R”), subscripts

“+” (“−”), and “a” (“b”) indicate the coefficients of the in-
terface states at the left (right) domain wall with up (down)
pseudospin, and located at y=a (y=b). The coefficients ψ(b)
can be solved from ψ(a) with the transfer matrix T by

L
L
R
R

T T T T
T T T T
T T T T
T T T T

L
L
R
R

= , (a5)

b

b

b

b

a

a

a

a

+,

,

+,

,

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

+,

,

+,

,

where Tij is the (i j, ) element of the T matrix. For a topolo-
gical coupler with a wedge-shaped TI region, its Hamiltonian
H in eq. (1) is modeled as a function varying in y, and the
final transfer matrix can be obtained by multiplying transfer
matrices of each layer with a height of Λ. On the other hand,
the transfer matrix T can be converted into a scattering ma-
trix S by changing the basis:

L
L
R
R

S S S S
S S S S
S S S S
S S S S

L
L
R
R

= , (a6)

a

b

a

b

a

b

a

b

,

+,

+,

,

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

+,

,

,

+,

where Sij is the (i, j) element of the S matrix.
L L R R( , , , )a b a b+, , , +,

T contains the coefficients of the incident

waves denoted by ψin, and L L R R( , , , )a b a b, +, +, ,
T contains the

coefficients of scattering waves denoted by ψout. With the
scattering matrix S, the outgoing waves (indicated by solid
arrows in Figure a1) at each port then can be directly cal-
culated from the incident waves (indicated by dashed arrows
Figure a1) via: ψout= Sψin. When placing a pseudospin up
source near port-1 to excite the topological coupler, the
coefficients of the incident waves can be expressed as ψin=
(1, 0, 0, 0)T, and the outgoing waves at the ith port then can be
directly calculated by Si1.

Figure a1 (Color online) Schematic of the topological coupler. The green
lines indicate the domain walls of the topological coupler. The pseudospin
up and pseudospin down topological interface states are indicated by ar-
rows at each port and labeled by subscripts of “+” and “−”, the direction of
each arrow indicates the propagation direction of each state. States with
positive group velocity are indicated by red arrows and those with negative
group velocity are indicated by blue arrows, all incident states are indicated
by dashed arrows, and outgoing states are indicated by solid arrows.
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